• Title/Summary/Keyword: Kinetic Positioning

Search Result 9, Processing Time 0.025 seconds

System Kinetic Model based Cycle Slip Free Technique for GPS Carrier Phase Precise Positioning (GPS 반송파 기반의 정밀 상대 항법에서 운동 모델 적용을 통한 사이클 슬립 대응 기법)

  • Chun, Se-Bum;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.502-509
    • /
    • 2011
  • It is necessary to resolve integer ambiguity in GPS carrier based precise positioning. If there is no signal blockage or cycle slip, the integer ambiguity does not changed. however, signal blockage and cycle slip occur frequently under real operational environment. under this situation, integer ambiguity maintenance is indispensable for continuity of navigation information. In this paper, a cycle slip free technique is proposed for simplifying integer ambiguity maintenance procedure. this technique tested with simulated carrier phase signal with cycle slip aided intentionally. As a result, the proposed technique can give navigation information continuously even if cycle slip is occured.

Biomechanical Variances in the Development of Forward Head Posture

  • Yasemin Deniz;Esra Pehlivan;Eda Cicek
    • Physical Therapy Korea
    • /
    • v.31 no.2
    • /
    • pp.104-113
    • /
    • 2024
  • Forward Head Posture (FHP) involves the anterior positioning of the head relative to the shoulders, often associated with muscular imbalances. It is known that individuals with FHP experience shortening of craniocervical extensors and cervical flexors. However, contrary to the understanding of flexion in the craniocervical extension subaxial region, a study has reported flexion in the craniovertebral spinal vertebrae among individuals with FHP. The aim of this study was to examine the consistency of biomechanical study results conducted for FHP. The relevant studies were investigated in PubMed and Google Scholar databases using the keywords "forward head posture OR cervical sagittal alignment OR cervical spine AND biomechanics OR kinetic analysis OR kinematic analysis." During the research selection process, only nine studies relevant to the purpose of our study were identified. Out of these nine studies, four conducted kinematic analysis related to FHP formation, while six conducted kinetic analysis. During the comparison of these studies, five inconsistencies were identified. Biomechanical studies on FHP reveal conflicting findings, suggesting potential variability in the biomechanics of FHP formation across individuals. However, drawing definitive conclusions requires further exploration through additional biomechanical investigations on FHP in the future.

The analysis for the static and kinetic positioning accuracy of NDGPS (NDGPS의 정적 및 동적 측위 정확도 분석)

  • Song, Geul-Jae;Park, Kwon-Il;Kong, Hyun-Dong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.611-619
    • /
    • 2008
  • The Ministry of Land, Transport and Maritime Affairs is working on the construction of Nationwide DGPS(NDGPS) with connection to Maritime DGPS Reference Stations and if Chun-cheon Reference Station is to be completed in 2008, DGPS positioning information is available in the whole area of Republic of Korea. Therefore to promote the usage of DGPS surveying information, we measured and panalyzed the accuracy of DGPS. In real-time DGPS positioning accuracy were 0.42m of planar Root Mean Square(RMS) error in static survey and 0.48m of planar RMS error in dynamic survey. We went abreast with RTK comparison measurement. According to these results. DGPS positioning information cannot be applied directly to the GIS construction field, but GIS application fields, requiring the real-time positioning information. can take advantage of it in variable cases.

System Implementation and Algorithm Development for Classification of the Activity States Using 3 Axial Accelerometer (3축 가속도를 이용한 활동상태 분류 시스템 구현 및 알고리즘 개발)

  • Noh, Yun-Hong;Ye, Soo-Young;Jeong, Do-Un
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • A real time monitoring system from a PC has been developed which can be accessed through transmitted data, which incorporates an established low powered transport system equipped with a single chip combined with wireless sensor network technology from a three-axis acceleration sensor. In order to distinguish between static posture and dynamic posture, the extracted parameter from the rapidly transmitted data needs differentiation of movement and activity structures and status for an accurate measurement. When results interpret a static formation, statistics referring to each respective formation, known as the K-mean algorithm is utilized to carry out a determination of detailed positioning, and when results alter towards dynamic activity, fuzzy algorithm (fuzzy categorizer), which is the relationship between speed and ISVM, is used to categorize activity levels into 4 stages. Also, the ISVM is calculated with the instrumented acceleration speed on the running machine according to various speeds and its relationship with kinetic energy goes through correlation analysis. With the evaluation of the proposed system, the accuracy level stands at 100% at a static formation and also a 96.79% accuracy with kinetic energy and we can easily determine the energy consumption through the relationship between ISVM and kinetic energy.

Evaluation Scheme of the GPS Positional Accuracy for Dynamic Bus Route Information using SMB(Single Buffering Method) (단일 버퍼링 기법을 이용한 동적 버스 노선 정보의 GPS 위치 정확도 평가 방안)

  • Park, Hong-Gi;Joo, Yong-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.677-685
    • /
    • 2011
  • In order to enhance public transportation and to maintain information credibility, improvement of accuracy regarding route and positional information of public transport is very significant. There have been a variety of methods using GPS to measure accuracy of location-based services. However, the researches of evaluation regarding kinematic position of linear objects measured by vehicle/kinematic GPS are still insufficient. That's why our paper aims to suggest method of evaluation accuracy on a real-time bus route surveyed by GPS by SBM(Single Buffering Method). To make it come true, we compared the findings on the static and dynamic positioning by using PP(Point Positioning), DGPS and GPS/INS integrated systems and analyzed the accuracy and error effects among them, focusing on Anyang city. Consequently, we can find out that in case of P.P. comparing positioning accuracy between RTK DGPS and GPS/INS, both of them have survey result within a margin of error of 5m. More importantly, we can evaluate positional accuracy of each GPS system based on the work provision of a public survey such as error for P.P.(14.5m, 18.1m), DGPS(16.9m, 18.5m), and GPS/INS(18.4m, 18.5m). We are expecting that proposed method in our paper can be utilized in a wide range of categories such as feasibility testing of GPS field survey and high accuracy of positioning for Bus Information System.

Acceleration Sensor(ADXL 202) based Kinetic Energy and Positioning Measurement Algorithm for U-SilverCare (U-SilverCare를 위한 가속도 센서(ADXL 202) 기반 운동량 및 자세 측정 알고리즘)

  • Ko, Byoung-Kwon;Kim, Chung-Yoon Jane;Ha, Gong-Yong;Kim, Sun-Hwa;Ahn, Jeong-Hwan;Kim, Young-Man
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.804-807
    • /
    • 2008
  • 최근 고령화 사회가 되면서 언제 어디서나 실시간으로 진료가 가능한 서비스들을 개발하려는 노력이 진행 중이며, 이에 관련된 기술의 중요성도 급증하고 있다. 특히 유비쿼터스 컴퓨팅과 유비쿼터스 네트워크를 활용한 노인건강 관리시스템(이하 U-SilverCare)의 필요성이 급증하고 있다. 본 논문에서는 U-SilverCare에서 유용하게 사용될 수 있는 가속도 센서를 소개하고 U-SilverCare에서 가속도 센서 사용의 적합성 실험과 실험 결과를 분석한다.

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF

A Study on Oscillation Analysis of Linear Stepping Motor (선형 스텝핑 전동기의 진동 해석에 관한 연구)

  • Lee, S.H.;Jung, D.Y.;Kang, I.S.;Jang, H.;Kwon, M.S.;Jang, S.H.;Oh, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.154-156
    • /
    • 1999
  • A Linear Stepping Motor(LSM) can operate open loop control mode similarly to a rotary stepping motor. The linear motion without any mechanical linkage in the LSM results in several advantages for precise positioning actuators. However, to realize the more stable and higher speed control without hunting, it is necessary to derive an equivalent circuit to explain the steady-state and transisent characteristics in order to find an adequate control rule for high performance control of the LSM. In this paper, magnetic equivalent circuit is obtained, based on the structure of the LSM, and then the electric equivalent circuit of the LSM is derived by solving equations for the magnetic equivalent circuit. The 1-step response characteristic of the LSM is analyzed by the ACSL with the voltage equations, the force equations, the force equations and the kinetic equation.

  • PDF

Study On Generating Compact Network RTK Corrections Considering Ambiguity Level Adjustment Among Reference Station Networks for Constructing Infrastructure of Land Vehicle (육상교통 인프라 구축을 위한 다중 네트워크 간 미지정수 수준 조정이 고려된 Compact Network PTK 보정정보 생성기법 연구)

  • Song, June-Sol;Park, Byung-Woon;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.404-412
    • /
    • 2013
  • Network RTK is widely used especially for static applications so far, however, the demand for high accuracy positioning for kinetic users such as land vehicles is growing for safety and convenience reasons. Kinematic users move along the roads and the network where they receive corrections can be changed. Compact Network RTK corrections should keep consistency while network change. In this paper, we introduced a method of generating Compact Network RTK corrections considering network ambiguity level adjustment by formulation of corrections. We verified the proposed method for reference station networks across whole country. We also generated Compact Network RTK corrections using simulation and real GPS data from reference stations in South Korea and evaluated performance of users. As a result, the discontinuity between corrections from two networks reduced to 0.25 cycle from several cycles. And user could achieve less than 8 cm (2DRMS) horizontal position accuracy continuously regardless of network change.