• Title/Summary/Keyword: Kinematic viscosity

Search Result 121, Processing Time 0.024 seconds

Estimation of Mechanical Properties of Sand Asphalt Concrete based on Physical Properties of Binder (결합재의 물리적 성질을 이용한 샌드아스팔트 혼합물의 강도특성 추정)

  • Kim, Kwang-Woo;Lee, Soon-Jae;Lee, Gi-Ho;Lee, Sung-Hoon;Lee, Byung-Duck
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.149-159
    • /
    • 2002
  • This study was performed to estimate the high-speed direct tensile strength(DTS1), low-speed direct tensile strength(DTS2) , indirect tensile strength(ITS) resilient modulus(MR) and stiffness index(SI) of sand asphalt mixture based on the absolute viscosity, kinematic viscosity, penetration, softening point and PG grade of binder. DTS2 showed higher correlation with the physical properties than other properties of mixture, and the next was DTS1, ITS, SI and MR in order. Among binder properties, PG grade showed the highest relation with DTS2. Therefore. it was found that the high DTS mixture could be made when the binder with a high PG grade was used. However, since the individual physical property showed a relatively low correlation, various properties were used together in regression analysis. The estimation models of DTS and ITS were over 0.99, respectively. R2 of MR and SI estimation models were over 0.91 and 0.93, respectively. It was concluded that mechanical properties could be estimated with a high coefficient of determination from those physical properties.

  • PDF

The Monitoring Study of Exchange Cycle of Automatic Transmission Fluid (자동변속기유(ATF) 교환주기 모니터링 연구)

  • Lim, Young-Kwan;Jung, Choong-Sub;Lee, Jeong-Min;Han, Kwan-Wook;Na, Byung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.274-278
    • /
    • 2013
  • Automatic transmission fluid (ATF) is used as an automatic transmission in the vehicle or as a characterized fluid for automatic transmission. Recently, vehicle manufacturers usually guarantee for changing fluids over 80000~100000 km mileage or no exchange. However, most drivers usually change ATF below every 50000 km driving distance when driving in Republic of Korea according to a survey from the Korea Institute of Petroleum Management which can cause both a serious environmental contamination by the used ATF and an increase in the cost of driving. In this study, various physical properties such as flash point, pour point, kinematic viscosity, dynamic viscosity at low temperature, total acid number and four-ball test were investigated for both fresh ATF and used ATF after the actual vehicle driving distance of 50000 km and 100000 km. It was shown that most physical properties were suitable for the specification of ATF, but the foam characteristics of the used oil after running 100000 km was unsuitable for the specification of fresh ATF. Therefore, the exchange cycle of ATF every 80000~100000 km driving distance is recommended considering great positive contributions to preventing environmental pollution and reducing driving cost.

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.

HP-GPC Analysis for Characteristics Change of Asphalt Cement Due to Aging (노화(老化)에 의한 아스팔트 시멘트 형질변화(形質變化)의 HP-GPC 분석(分析))

  • Kim, Kwang Woo;Yeon, Kyu Seok;Choi, Joong Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.49-57
    • /
    • 1992
  • This study was conducted to evaluate physical property change of asphalt cement chromatograms (by HP-GPC) were experimentally obtained from 3 types of AC-20 virgin ACs, 5 and 24-hour artificially aged ACs, and naturally aged 4 ACs that were recovered from 4 different roads. Absolute viscosity, kinematic visoosity and penetration were the physical properties tested. THF was used for mobil phase and RI detector was used as a detector for Hp-GPC testing. Correlation between each physical property change and the chromatogram variation was evaluated. Each chromatogram was divided into ten-equal-time slices. The percentage areas of 10 slices and each physical property were used for statistical correlation evaluation. Statistical analysis results showed that eaoh physical property had a strong correlation with the chromatogram characteristics. Aging was identified as a mechanism of change of molecular size distribution - increasing large size molecules and reducing coresponding samll size molecules.

  • PDF

Study on the response surface optimization of online upgrading of bio-oil with MCM-41 and catalyst durability analysis

  • Liu, Sha;Cai, Yi-xi;Fan, Yong-sheng;Li, Xiao-hua;Wang, Jia-jun
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.19-30
    • /
    • 2017
  • Direct catalysis of vapors from vacuum pyrolysis of biomass was performed on MCM-41 to investigate the effects of operating parameters including catalyzing temperature, catalyzing bed height and system pressure on the organic yields. Optimization of organic phase yield was further conducted by employing response surface methodology. The statistical analysis showed that operating parameters have significant effects on the organic phase yield. The organic phase yield first increases and then decreases as catalyzing temperature and catalyzing bed height increase, and decreases as system pressure increases. The optimal conditions for the maximum organic phase yield were obtained at catalyzing temperature of $502.7^{\circ}C$, catalyzing bed height of 2.74 cm and system pressure of 6.83 kPa, the organic phase yield amounts to 15.84% which is quite close to the predicted value 16.19%. The H/C, O/C molar ratios (dry basis), density, pH value, kinematic viscosity and high heat value of the organic phase obtained at optimal conditions were 1.287, 0.174, $0.98g/cm^3$, 5.12, $5.87mm^2/s$ and 33.08 MJ/kg, respectively. Organic product compositions were examined using gas chromatography/mass spectrometry and the analysis showed that the content of oxygenated aromatics in organic phase had decreased and hydrocarbons had increased, and the hydrocarbons in organic phase were mainly aliphatic hydrocarbons. Besides, thermo-gravimetric analysis of the MCM-41 zeolite was conducted within air atmosphere and the results showed that when the catalyst continuously works over 100 min, the index of physicochemical properties of bio-oil decreases gradually from 1.15 to 0.45, suggesting that the refined bio-oil significantly deteriorates. Meanwhile, the coke deposition of catalyst increases from 4.97% to 14.81%, which suggests that the catalytic activity significantly decreases till the catalyst completely looses its activity.

Optimization of bioethanol production from nigerian sugarcane juice using factorial design

  • Suleiman, Bilyaminu;Abdulkareem, Saka A.;Afolabi, Emmanuel A.;Musa, Umaru;Mohammed, Ibrahim A.;Eyikanmi, Tope A.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.69-86
    • /
    • 2016
  • The quest to reduce the level of overdependence on fossil fuel product and to provide all required information on proven existing alternatives for renewable energy has resulted into rapid growth of research globally to identify efficient alternative renewable energy sources and the process technologies that are sustainable and environmentally friendly. The present study is aimed at production and characterization of bioethanol produced from sugarcane juice using a $2^4$ factorial design investigating the effect of four parameters (reaction temperature, time, concentration of bacteria used and amount of substrate). The optimum bioethanol yield of 19.3% was achieved at a reaction temperature of $30^{\circ}C$, time of 72 hours, yeast concentration of 2 g and 300 g concentration of substrate (sugarcane juice). The result of statistical analysis of variance shows that the concentration of yeast had the highest effect of 7.325 and % contribution of 82.72% while the substrate concentration had the lowest effect and % contribution of -0.25 and 0.096% respectively. The bioethanol produced was then characterized for some fuel properties such as flash point, specific gravity, cloud point, pour point, sulphur content, acidity, density and kinematic viscosity. The results of bioethanol characterization conform to American society for testing and materials (ASTM) standard. Hence, sugarcane juice is a good and sustainable feedstock for bioethanol production in Nigeria owing relative abundance, cheap source of supply and available land for large scale production.

Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils (다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석)

  • Lim, Young-Kwan;Jeon, Cheol-Hwan;Kim, Shin;Yim, Eui Soon;Song, Hung-Og;Shin, Seong-Cheol;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Various type of alternative fuel have been developed due to exhaustion of fossil fuel reserves and high oil price. Biodiesel is produced from the reaction of triglyceride, which is main component of animal fat and vegetable oil, and methanol by methanolysis as it is known for eco- friendly fuel for alternative petrodiesel. In this work, it was analyzed for the characteristics of the blended biodiesel with domestic petrodiesel according to blending ratio. Density, kinematic viscosity and flash point were increased with increasing the content of biodiesel. But the characteristic of blended biodiesel fuel were changed to aggravate in low temperature. Also, the derived cetane number(DCN) from IQT was increased by added biodiesel. Especially, the DCN of biodiesel from palm oil showed 71.26.

Characteristic Analysis of GTL Fuel as an Automobile Diesel (자동차용 경유로서 GTL의 연료특성분석)

  • Lim, Young-Kwan;Shin, Seong-Cheol;Kim, Jong-Ryeol;Yim, Eui-Soon;Song, Hung-Og;Kim, Dongkil
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.617-623
    • /
    • 2008
  • GTL (gas-to-liquid) fuel produced by the Fischer-Tropsch reaction of carbon monoxide (CO) and hydrogen ($H_2$) is expected to be one of the environmental friendly biomass based alternatives and blended to petrodiesel. In this study, the characteristic of the fuel was analyzed by its concentration differences after blending petrodiesel in domestic market with different amounts of GTL fuel which produced from Shell. Gas chromatography shows that GTL fuel consists of longer paraffin chain than common diesel. GTL fuel showed a high flash point, distillation, kinematic viscosity, and derived cetane number. In addition, GTL fuel showed lower lubricity due to low sulfur content.

Quantitative Analysis of Fuel in Engine Oil (엔진오일 내 연료성분 정량분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Na, Yong-Gyu;Kim, Jong-Ryeol
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.714-719
    • /
    • 2017
  • The contaminated engine oil by fuel can intimidate driver safety due to vehicle problems such as engine abrasion, fire and sudden unintended acceleration. In this study, we investigate various functional properties of the engine oil contaminated with fuel. The test results indicated that the engine oil contaminated with fuel had relatively low values of the flash point, pour point, density, kinematic viscosity and cold cranking simulator. Furthermore, a four ball test suggested that the contaminated engine oil increased wear scar due to the poor lubricity. Moreover, SIMDIST (simulated distillation) using ASTM D2887 was applied to analyze fuel characteristics in an engine oil. The SIMDIST analysis result showed a lower carbon number, and the fuel was detected at an earlier retention time than that of using engine oil in chromatogram. Also, it is possible to quantitatively analyze for fuel contents in the engine oil. The SIMDIST method for the diagnosis of oil conditions can be used whether the fuel was involved or not, instead of analyzing other physical properties that require various analytical instruments, large volumes of oil samples, and long analysis time.

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.