Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils

다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석

  • Lim, Young-Kwan (Research Center, Korea Institute of Petroleum Quality) ;
  • Jeon, Cheol-Hwan (Research Center, Korea Institute of Petroleum Quality) ;
  • Kim, Shin (Research Center, Korea Institute of Petroleum Quality) ;
  • Yim, Eui Soon (Research Center, Korea Institute of Petroleum Quality) ;
  • Song, Hung-Og (Research Center, Korea Institute of Petroleum Quality) ;
  • Shin, Seong-Cheol (Research Center, Korea Institute of Petroleum Quality) ;
  • Kim, DongKil (Research Center, Korea Institute of Petroleum Quality)
  • 임영관 (한국석유품질관리원 연구센터) ;
  • 전철환 (한국석유품질관리원 연구센터) ;
  • 김신 (한국석유품질관리원 연구센터) ;
  • 임의순 (한국석유품질관리원 연구센터) ;
  • 송흥옥 (한국석유품질관리원 연구센터) ;
  • 신성철 (한국석유품질관리원 연구센터) ;
  • 김동길 (한국석유품질관리원 연구센터)
  • Received : 2009.01.08
  • Accepted : 2009.02.14
  • Published : 2009.04.30

Abstract

Various type of alternative fuel have been developed due to exhaustion of fossil fuel reserves and high oil price. Biodiesel is produced from the reaction of triglyceride, which is main component of animal fat and vegetable oil, and methanol by methanolysis as it is known for eco- friendly fuel for alternative petrodiesel. In this work, it was analyzed for the characteristics of the blended biodiesel with domestic petrodiesel according to blending ratio. Density, kinematic viscosity and flash point were increased with increasing the content of biodiesel. But the characteristic of blended biodiesel fuel were changed to aggravate in low temperature. Also, the derived cetane number(DCN) from IQT was increased by added biodiesel. Especially, the DCN of biodiesel from palm oil showed 71.26.

화석연료의 고갈과 원유가격 폭등으로 인해 이를 대체할 수 있는 다양한 연료의 개발이 이루어지고 있다. 동물성 지방이나 식물성 기름의 주성분인 트리글리세라이드를 메탄올과 반응시켜 생산된 바이오디젤은 기존의 석유디젤을 대체할 수 있는 친환경적인 연료로 알려져 있다. 본 연구에서는 국내에서 유통중인 경유에 6종류의 원료별 바이오디젤을 일정 비율로 혼합한 뒤, 다양한 연료특성을 분석하였다. 바이오디젤의 농도가 높아질수록 밀도, 동점도, 인화점이 상승하였고, 저온특성은 악화되는 것을 확인하였다. 또한 경유의 중요한 연료특성인 세탄가를 IQT를 이용해 측정한 결과, 바이오디젤의 혼합비율이 높아질수록, 유도세탄가가 높게 측정되었으며, 특히 팜유로부터 생산된 바이오디젤의 경우, 71.26의 높은 유도세탄가가 측정되었다.

Keywords

References

  1. Antoni, D., Zverlow, V. V. and Schwarz, W. H., "Biofuels from Microbes," Applied Microbiology and Biotechnology, 77, 23-35 (2007) https://doi.org/10.1007/s00253-007-1163-x
  2. Campbell, C. J. and Laherrere, J. H., "The End of Cheap Oil," Sci. Am., 278(3), 77-83(1998) https://doi.org/10.1038/scientificamerican0398-77
  3. http://www.geni.org/globalenergy/policy/renewableenergy/index.shtml
  4. Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A. and Goodwin Jr, J. G., "Synthesis of Biodiesel via Acid Catalysis," Ind. Eng. Chem. Res., 44(14), 5353-5363(2005) https://doi.org/10.1021/ie049157g
  5. Hong, Y. K. and Hong, W. H., 'Biodiesel Production Technology and Its Fuel Properties,' Korean Chem. Eng. Res., 45(5), 424-432 (2007)
  6. Lim, Y. K., Shin, S. C., Yim, E. S. and Song, H. O., 'The Effective Product Method of Biodiesel,' J. Korean Ind. Eng. Chem., 19(2), 137(2008)
  7. Balat, M., Balat, H. and Oz, C., 'Progress in Bioethanol Processing,' Prog. Energy and Combust. Sci., 34(6), 551-573(2008) https://doi.org/10.1016/j.pecs.2007.11.001
  8. Yim, E. S., Min, K., Jeon, C., Lee, D., Kim, J. R., Kim, S. S., Jang, E. J., Park, C. K., Jung, C. S., Kim, J. K., Lim, Y. K. and Shin, S. C., 'Actual Assessment to Bioethanol Blended Fuel in Domestic,' New & Renewable Energy, 3(4), 98-103(2007)
  9. Cohron, M., Zhao, H., Liu, H. and Pan, W., "Synthesis Gas Production with an Adjustable $H_2/CO $ Ratio through the Coal Gasfication Process: Effects of Coal Ranks and Methane Addition," Energy & Fuels, 22(3), 1720-1730(2008) https://doi.org/10.1021/ef7005707
  10. Lim, Y. K., Shin, S. C., Kim, J. R., Yim, E. S., Song, H. O. and Kim, D., 'Characteristic Analysis of GTL fuel as an Automobile Diesel,' J. Korean Ind. Eng. Chem., 19(6), 617-623(2008)
  11. Bajpai, D. and Tyagi, V. K., 'Biodiesel: Source, Production, Composition, Properties and Its Benefits,' J. Oleo. Sci., 55(10), 487-502 (2006) https://doi.org/10.5650/jos.55.487
  12. EAI and U.S. Department of Energy, "Fuel and Energy Source Codes and Emission Coefficients," (2002)
  13. http://www.shell.com/home/content/shellgasandpower-en/
  14. Lee, H. S., Choi, J. J., Shin, Y. H., Lim, Y., Han, C., Kim, H. and Lee, Y. W., 'Effect of Additives on the Contents of Fatty Acid Methyl Esters of Biodiesel Fuel in the Transesterification of Palm oil with Supercritical Methanol,' Korean Chem. Eng. Res., 46(4), 747-751 (2008)
  15. Salis, A., Pinna, M., Monduzzi, M. and Solinas, V., "Biodiesel Production from Triolein and Short Chain Alcohols through Biocatalysis," J. Biotechnol., 119(3), 291-299(2005) https://doi.org/10.1016/j.jbiotec.2005.04.009
  16. Choi, J. D., Kim, D. K., Park, J. Y., Rhee, Y. W. and Lee, J. S., 'Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production,' Korean Chem. Eng. Res., 46(1), 194-199 (2008)
  17. Moser, B. R., "Influence of Blending Canola, Palm, Soybean, and Sunflower oil Methyl Esters on Fuel Properties of Biodiesel," Energy & Fuels, 22(6), 4301-4306(2008) https://doi.org/10.1021/ef800588x
  18. Business act for quality standard inspection method and inspection fee for petroleum product, Ministry of Commerce, Industry and Energy, 2006-42