• Title/Summary/Keyword: Kinematic design

Search Result 537, Processing Time 0.025 seconds

Analysis on Kinematic Characteristics of the Revolute-joint-based Translational 3-DOF Parallel Mechanisms (회전관절만을 활용하는 병진 3자유도 병렬 메커니즘의 기구학 특성 분석)

  • Park, Jae-Hyun;Kim, Sung Mok;Kim, WheeKuk
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.119-132
    • /
    • 2015
  • Two novel parallel mechanisms (PMs) employing two or three PaPaRR subchains are suggested. Each of those two PMs has translational 3-DOF motion and employs only revolute joints such that they could be adequate for haptic devices requiring minimal frictions. The position analyses of those two PMs are conducted. The mobility analysis, the kinematic modeling, and singularity analysis of each of two PMs are performed employing the screw theory. Then through optimal kinematic design, each of two PMs has excellent kinematic characteristics as well as useful workspace size adequate for haptic applications. In particular, by applying an additional redundantly actuated joint to the 2-PaPaRR type PM which has a closed-form position solution, it is shown that all of its parallel singularities within reachable workspace are completely removed and that its kinematic characteristics are improved.

A Study On Point Storm Energy Influencing to the Soil Erosion (토양유실에 미치는 각지방별 강우 에너지 분석)

  • 박성우
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.47-54
    • /
    • 1976
  • The research are intend to establish the design criteria for slopy upland reclamation, with protecting the loss of top-soil, Recently undertaken reclamation works for developing the slopy upland of 310,000 ha. have faced to the vagueness of their deign criteria. One of the most influencing factors to cause the soil erosion depends basically upon the kinematic energy of rainfall, which is developed by the rainfall intensity. Their relationship between the rainfall and its kinematic energy is expressed as EK=916+ 331 log I. Consequently, the study was carried out through analyzing each intensity of the independant rainfall through out the 14 rainfall stations. About 10,000 single storms self recording chart of more than 10mm of rainfall amout were collected and analyzed by computer. The results of research show their kinematic energy for the 14 stations, and will be available for the establishment of the design oriteria.

  • PDF

The test-retest reliability of gait kinematic data measured using a portable gait analysis system in healthy adults

  • An, Jung-Ae;Byun, Kyung-Seok;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.25-34
    • /
    • 2020
  • Background: Gait analysis is an important measurement for health professionals to assess gait patterns related to functional limitations due to neurological or orthopedic conditions. The purpose of this study was to investigate the reliability of the newly developed portable gait analysis system (PGAS). Design: Cross-sectional design. Test-retest study. Methods: The PGAS study was based on a wearable sensor, and measurement of gait kinematic parameters, such as gait velocity, cadence, step length and stride length, and joint angle (hip, knee, and ankle) in stance and swing phases. The results were compared with a motion capture system (MCS). Twenty healthy individuals were applied to the MCS and PGAS simultaneously during gait performance. Results: The test-retest reliability of the PGAS showed good repeatability in gait parameters with mean intra-class correlation coefficients (ICCs) ranging from 0.840 to 0.992, and joint angles in stance and swing phase from 0.907 to 0.988. The acceptable test-retest ICC was observed for the gait parameters (0.809 to 0.961), and joint angles (0.800 to 0.977). Conclusion: The results of this study indicated that the developed PGAS showed good grades of repeatability for gait kinematic data along with acceptable ICCs compared with the results from the MCS. The gait kinematic parameters in healthy subjects can be used as standard values for adopting this PGAS.

Dimensional Syntheris and Kinematic Analysis of RSCS-SSP Spatial Mechanism with use of the Displacement Matrix Method (변위행렬법을 이용한 RSCS-SSP 공간기구의 치수합성과 운동해석)

  • 강희용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.113-118
    • /
    • 1997
  • This paper presents the dimensional synthesis and kinematic analysis of the RSCS-SSP motion generating spatial mechanism using the displacement matrix method. This type of spatial mechanisms is used for the Mcpherson suspension in small automobiles. It is modeled for the wheel bump/rebound and steering motion. First, the suspension is modeled as a multiloop spatial rigid body guidance mechanism for the two major motions. Then the design equations for SSP, RS, and SC strut links are applied to synthesize an RSCS-SSP for up to three prescribed positions for the steering motiom from the suspension design specification. Thus a RSCS-SSP mechanism which is synthesized is also analyzed for the displacement during the steering motion.

  • PDF

A Analysis of Highway′s Horizontal Alignment Using Kinematic GPS Surveying (동적 GPS 관측에 의한 도로의 평면선형 분석)

  • 이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • The design of highway in the future should be convenient using of a high-technology information, and it needs the design of alignment that is able to find the maximum vehicles inducement function fitting into Car Navigation System. Well then, the alignment of the existent highway needs to be analyzed with accuracy for improving design of existent highway, and it needs the design drawing of existent highway, and coordinates of the main point. This study gets data of the alignment of highway economically by Kinematic GPS surveying to analyze the alignment of existent highway, and horizontal alignment of highway is analyzed by this data. The result of study is included within range practical error, and alignment analysis can be known that there is practical.

  • PDF

Assemblability Analysis of Kinematic Configurations of Front-Wheel Drive Automatic Transmissions (전륜구동 차량용 자동변속기의 기구학적 구성에 대한 조립 가능성 분석에 관한 연구)

  • Kwon, Hyun Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.24-34
    • /
    • 2019
  • An automotive automatic transmission is a popular power-transmitting device in passenger vehicles, as it provides various speed ratios for diverse driving conditions with easy manipulation and smooth gear shifting. The transmission is mainly composed of input and output shafts, planetary gear sets, brakes/clutches, and housing, and it yields multiple forward gears and one reverse gear by actuating the shifting devices of the brakes and clutches. In developing a new transmission, kinematic configurations of a transmission, which presents a brief structure and actuation schemes for speed ratios, need to be checked to determine if the structure can be assembled in a layout. It is impossible for a transmission concept having any interference in connecting main components to be developed further in the design process, since connection interference leads to failure of a layout design in the 2-D plane. In this research, an analysis of the assemblability of a front-wheel drive automatic transmission is carried out on an example concept design by applying the vertex addition algorithm based on graph theory.

A Configuration Design Sensitivity Analysis for Kinematically driven Mechanical Systems

  • Kim, D.W.;Yang, S.M.;Kim, H.W.;Bae, D.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.110-117
    • /
    • 1998
  • A continuum-based configuration design sensitivity analysis method is developed for kinematically driven mechanical systems. The configuration design variable for mechanical systems is defined. The 3-1-3 Euler angle is employed as the orientation design variable. Kinematic admissibility conditions of configuration design change. Direct differentiation method is used to derive the governing equations of the design sensitivity. Numerical examples are presented to demonstrate the validity and effectiveness of the proposed method.

  • PDF

Kinematic Correction of n Differential Drive Mobile Robot and a Design for the Reference-Velocity Trajectory with Acceleration-Resolution Constraint on Motor Controllers (차동 구륜이동로봇의 기구학적 보정과 모터제어기의 가속도 해상도 제약을 고려한 기준속도궤적의 설계)

  • 문종우;김종수;박세승
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.498-505
    • /
    • 2002
  • Reducing odometer errors caused by kinematic imperfections in wheeled mobile robots is imestigated. Wheel diameters and wheelbase are corrected by using encoders without landmarks. A new velocity trajectory is proposed that compensates for an orientation error due to acceleration- resolution constraints on motor controllers. Based on this velocity trajectory, the wheel velocity of one out of two driven wheels may be changed by the traveled distance of the mobile robot. It is shown that a wheeled mobile robot can't move along a straight line exactly, even if kinematic correction are achieved perfectly, and this phenomenon is attributable to acceleration-resolution constraints on motor controllers. We experiment on a wheeled mobile robot with 2 d.o.f. are used in the experiment to verify the proposed scheme.

A Forward Closed-Form Position Solution, Kinematic Analysis And Implementation of a Translational 3-DOF Parallel Mechanism Formed by Constraining a Stewart Platform Structure (스트워트 플랫폼 구조를 구속하여 얻어지는 병진형 3 자유도 병렬 메커니즘의 정위치 해석해와 기구학 해석 및 구현)

  • Shin Dong-Min;Chung Jae-Heon;Oh Se-Min;Yi Byung-Ju;Kim Whee-Kuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1035-1043
    • /
    • 2006
  • In this study, a translational 3-DOF parallel mechanism formed by constraining the Stewart Platform Mechanism is investigated. The translational 3-DOF parallel mechanism has three struts(3-UPS type serial subchains) and in addition, has a PPP type serial subchain in the middle of the mechanism. Firstly, the closed-form forward and reverse position solutions are derived for this mechanism. And analysis on kinematic characteristics using isotropic index of the Jacobian is conducted to examine effects of design parameters for the mechanism. Lastly, a prototype mechanism is implemented and the kinematic performance of the translational 3-DOF parallel mechanism was verified through experimental work.

Kinematic Analysis of Several Linkage Drives for Mechanical Presses (다양한 링크구동 기계프레스에 대한 기구학적 분석)

  • 구형욱;황병복;임중연;이호용
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.471-481
    • /
    • 1997
  • This paper is concerned with the kinematic analysis of several linkage drives for mechanical presses. Load and velocity characteristics of conventional presses are illustrated and a design of new drive for a mechanical press is represented. In this regard, a crank-slider mechanism with arc crank-pin guide is introduced and compared with other linkage drives. Kinematic performances are analyzed in respect of load capacity, slide velocity characteristics using a developed SS-Plot program. The new linkage drive turns out to be effective in terms of load and velocity characteristics, and productivity.

  • PDF