• 제목/요약/키워드: Kinematic control

검색결과 646건 처리시간 0.025초

병렬로봇의 설계공차 설정에 따른 기계적 정밀도의 영향 분석 (The Effects of Design Parameters on the Mechanical Precision of an End Effector on a Parallel Kinematic Robot)

  • 박찬훈;김두형;도현민;최태용;박동일;김병인
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.847-852
    • /
    • 2016
  • In this paper, important design parameters for parallel kinematic robots are defined, paying special attention to machining errors which may cause kinematic errors at the end effector of a robot. The kinematic effects caused by each design parameter, as well as their upper/lower limits, are analyzed here. To do so, we have developed a novel software program to compute kinematic errors by considering its defined design parameters. With this program, roboticists designing parallel kinematic robots can understand the important design parameters for which upper/lower allowances have to be strictly controlled in the design process. This tactic can be used for the design of high-speed, parallel kinematic robots to reduce the design/manufacturing costs and increase kinematic precision.

비대칭 구조를 갖는 두 협조 로봇의 컴플라이언스 제어방법 (A compliant control method for cooperating two arms with asymetric kinematic structures)

  • 여희주;서일홍
    • 전자공학회논문지B
    • /
    • 제33B권7호
    • /
    • pp.40-50
    • /
    • 1996
  • An unified compliant control algorithm to regulate the force by dual arms is proposed, where tow arms are treated as one arm in a kinematic viewpoint. The force error calculated form the information of two force/torque sensors attached to the end of each arm is transferred to minimum actuator coordinates, and then is distributed to total system actuator coordinates. The position adjustment at the total actuator coordinates is computed based on the effective computed based on the effective compliance matrix with respect to total actuator coordinates, which is obtained by coordinate transformation between the task coordinates and the total actuator coordinates. An experiment is carried out for dual arms with asymmetric kinematic structure to control an interaction force between manipulators and the environment. The performances of the proposed control algorithm are experimentally compared to those of dual arms employing master/slave scheme. The proposed compliant control algorithm not only ouperforms other algorithms, but also can be treated as an unified approach n the sense that it can be applied to arbitrary dual arm systems with general kinematic structures.

  • PDF

디그레시브 펀 권사(Degressive Pirn Winding)를 위한 기구학적 권사 제어 알고리듬에 관한 연구 (A Study on the Kinematic Winding Control Algorithm for Degressive Pirn Winding)

  • 최영휴;정원지;김광영
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.133-139
    • /
    • 2003
  • Direct motor-driven winding has been increasingly applied in winding machinery. However, it is necessary to analyze the kinematics of winding prior to developing the winding control algorithm, because direct motor-driven winding machine should be operated in accordance with the pre-determined kinematic information for the winding control. This paper presents the kinematics of the degressive winding method and its kinematic winding control algorithm in order to wind the required volume of a pirn package in a desired shape. The proposed algorithm can give the appropriate yarn speed, traverse speed, and the spin speed of the spindle at every traverse stroke, which are utilized for controlling the spindle motor and traverse motor of the winding machine. Computer winding simulations showed that the proposed algorithm is successful in the degressive pirn winding.

잉여 다리 병렬형 로봇의 해석 (Analysis of parallel manipulators with redundant limbs)

  • 김성복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.730-733
    • /
    • 1996
  • This paper presents the kinematic and dynamic analysis of parallel manipulators with redundant limbs, obtained by putting additional limbs to an existing parallel manipulator. We develop the kinematic and dynamic models of a parallel, manipulator with redundant limbs. The redundancy in parallelism due to the increased number of limbs and the redundancy in actuation due to the increased number of active joints are considered in the modeling. Based on the derived models, we define the kinematic and dynamic manipulabilities of a parallel manipulator with redundant limbs. The effect of the redundant limbs on the performance of parallel manipulators is analyzed in terms of kinematic and dynamic manipulabilities.

  • PDF

잉여 조인트 병렬형 로봇의 해석 (Analysis of parallel manipulators with redundant joints)

  • 김성복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.371-374
    • /
    • 1996
  • This paper presents the kinematic and dynamic analysis of parallel manipulators with redundant joints, obtained by putting additional active joints to an existing parallel manipulator. We develop the kinematic and dynamic models of a parallel manipulator with redundant joints. The redundancy in serial chain, due to the increased number of joints per limb, is considered in the modeling. Based oh the derived models, we define the kinematic and dynamic manipulabilities of a parallel manipulator with redundant joints. The effect of the redundant joints on the performance of parallel manipulators is analyzed in terms of kinematic and dynamic manipulabilities.

  • PDF

잉여 구동 병렬형 로봇의 해석 (Analysis of parallel manipulators with actuation redundancy)

  • 김성복;김순석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.535-538
    • /
    • 1996
  • This paper presents the kinematic and dynamic analysis of parallel manipulators with actuation redundancy, obtained by replacing the passive joints of an existing parallel manipulator with the active ones. We develop the kinematic and dynamic models of a parallel manipulator with actuation redundancy. The multiplicity in selecting the controllable active joints among the increased number of active joints is considered in the modeling. Based on the derived models, we define the kinematic and dynamic manipulabilities of a parallel manipulator with actuation redundancy. The effect of the actuation, redundancy on the performance of parallel manipulators is analyzed in terms of kinematic and dynamic manipulabilities.

  • PDF

위치 정밀도 향상을 위한 관절강성 파라미터 포함 로봇 캘리브레이션 (Robot Calibration with Joint Stiffness Parameters for the Enhanced Positioning Accuracy)

  • 강희준;신성원;노영식;서영수;임현규;김동혁
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.406-410
    • /
    • 2008
  • This paper presents a new robot calibration algorithm with joint stiffness parameters for the enhanced positioning accuracy of industrial robot manipulators. This work is towards on-going development of an industrial robot calibration software which is able to identify both the kinematic and non-kinematic robot parameters. In this paper, the conventional kinematic calibration and its important considerations are briefly described first. Then, a new robot calibration algorithm which simultaneously identifies both the kinematic and joint stiffness parameters is presented and explained through a computer simulation with a 2 DOF manipulator. Finally, the developed algorithm is implemented to Hyundai HX165 robot and its resulting improvement of the positioning accuracy is addressed.

로보트 accuracy향상을 위한 kinematic identification (Kinematic Iidentification for Improving Robot Accuracy)

  • 조선휘;김문상;김귀식;장현상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.131-137
    • /
    • 1989
  • The effect of kinematic model choice on robot calibration is examined. This paper presents a complete formulation to identify the actual robot kinematic parameters directly from position data. The method presented in this paper applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joint.

  • PDF

신경회로망을 사용한 역운동학 해 (A solution to the inverse kinematic by using neural network)

  • 안덕환;이종용;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.124-126
    • /
    • 1989
  • Inverse kinematic problem is a crucial point for robot manipulator control. In this paper, to implement the Jacobian control technique we used the Hopfield(Tank)'s neural network. The states of neurons represent joint veocities, and the connection weights are determined from the current value of the Jacobian matrix. The network energy function is constructed so that its minimum corresponds to the minimum least square error. At each sampling time, connection weights and neuron states are updated according to current joint position. Inverse kinematic solution to the planar redundant manipulator is solved by computer simulation.

  • PDF

Design of an Omni-directional mobile Robot with 3 Caster Wheels

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju;Yang, Sung-Il;You, Bum-Jae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.210-216
    • /
    • 2001
  • In this paper, design of a 3-degree-of-freedom mobile robot with three caster wheels is performed. Initially, kinematic modeling and singularity analysis of the mobile robot is performed. It is found that the singularity can be avoided when the robot has more than two wheels on which two active joints are located. Optimal kinematic parameters of mobile robots with three active joint variables and with four active joint variables are obtained and compared with respect to kinematic isotropic index of the Jacobian matrix of the mobile robot which is functions of the wheel radius and the length of steering link.

  • PDF