• Title/Summary/Keyword: Kinematic Survey

Search Result 70, Processing Time 0.031 seconds

Study of Environmental Impact on the Galaxy Evolution in the Virgo Cluster

  • Lee, Woong;Rey, Soo-Chang;Kim, Suk;Chung, Jiwon;Lee, Youngdae;Chung, Aeree;Yoon, Hyein
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.47.3-48
    • /
    • 2015
  • We present environmental effects on the galaxy evolution in the Virgo cluster focusing on intracluster medium - interstellar medium (ICM-ISM) interactions and gravitational interactions. We identify signatures of these environmental effects for 21 massive late-type galaxies based on the visual inspection of high resolution HI data from VLA Imaging of Virgo spirals in Atomic gas (VIVA) survey comparing with multi-wavelength data. We classify galaxies into three subgroups showing different environmental effects. First and second groups includes galaxies influenced by ongoing/active and past ram pressure stripping effect, respectively. Third group consists of galaxies undergoing gravitational interactions. Additionally, we define neighbor galaxies for each VIVA galaxies utilizing kinematic data from Extended Virgo Cluster Catalog. Assuming that neighbor galaxies share similar levels of environmental effects with host VIVA galaxies, we investigate environmental effects on galaxy properties in different subgroups using SDSS optical and GALEX ultraviolet photometric data. We find that dwarf neighbor galaxies in first and second groups show rapid quenching of their star formation (SF), while massive counterparts are still in SF activity. On the other hand, most third group galaxies show hints of SF activity regardless of their mass. We conclude that SF and evolution of galaxy in the cluster environment is closely linked to ICM-ISM interactions and dwarf galaxies seem to be more sensitive to this effect compared to massive counterparts.

  • PDF

A Hyper Suprime-Cam View of the Interacting Galaxies of the M81 Group - Structures and Stellar Populations

  • Arimoto, Nobuo;Okamoto, Sakurako
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.39.2-39.2
    • /
    • 2017
  • Over the last decade, deep studies of nearby galaxies have led to the discovery of vast stellar envelopes that are often rich in substructure. These components are naturally predicted in models of hierarchical galaxy assembly, and their observed properties place important constraints on the amount, nature, and history of satellite accretion. One of the most effective ways of mapping the peripheral regions of galaxies is through resolved star studies. Using wide-field cameras equipped to 8 m class telescopes, it has recently become possible to extend these studies to systems beyond the Local Group. Located at a distance of 3.6 Mpc, M81 is a prime target for wide-field mapping of its resolved stellar content. In this talk, we present the detailed results from our deep wide-field imaging survey of the M81 group with the Hyper Suprime-Cam (HSC), on the Subaru Telescope. We report on the analysis of the structures, stellar populations, and metallicities of old dwarf galaxies such as NGC3077, IKN, KDG061, as well as young stellar systems such as Arp's Loop and Holmberg IX. Several candidates for yet-undiscovered faint dwarf galaxies and young stellar clumps in the M81 group will also be introduced. The peculiar galaxy NGC3077 has been classified as the irregular galaxy. Okamoto et al. (2015, ApJ 809, L1) discovered an extended halo structure with S-shape elongated tails, obvious feature of tidal interaction. With a help of numerical simulation by Penarrubia et al. (2009, ApJ 698, 222), we will demonstrate that this tidal feature was formed during the latest close encounters between M81, M82, and NGC 3077, which induced star formation in tidally stripped gas far from the main bodies of galaxies. It is not clear whether the latest tidal interaction was the first close encounters of three galaxies. If NGC3077 is still surrounded by the dark matter halo, it implies that NGC3077 has undergone the first tidal stripping by larger companions. Kinematic studies of inter galactic globular clusters and planetary nebulae would tell us the past history of tidal interaction in this group of galaxies.

  • PDF

DATUM PROBLEM OF NETWORK-BASED RTK-GPS POSITIONING IN TAIWAN

  • Yeh, Ta-Kang;Hu, Yu-Sheng;Chang, Ming-Han;Lee, Zu-Yu;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.90-94
    • /
    • 2007
  • The conventional single-reference station positioning is affected by systematic errors such as ionospheric and tropospheric delay, so that the rover must be located within 10 km from the reference station in order to acquire centimeter-level accuracy. The medium-range real-time kinematic has been proven feasible and can be used for high precision applications. However, the longer of the baseline, the more of the time for resolving the integral ambiguity is required. This is due to the fact that systematic errors can not be eliminated effectively by double-differencing. Recently, network approaches have been proposed to overcome the limitation of the single-reference station positioning. The real-time systematic error modeling can be achieved with the use of GPS network. For expanding the effective range and decreasing the density of the reference stations, Land Survey Bureau, Ministry of the Interior in Taiwan set up a national GPS network. In order to obtain the high precision positioning and provide the multi-goals services, a GPS network including 66 stations already been constructed in Taiwan. The users can download the corrections from the data center via the wireless internet and obtain the centimeter-level accuracy positioning. The service is very useful for surveyors and the high precision coordinates can be obtained real time.

  • PDF

A Study on the Kinematic Surveying Method Using the Digital Video Recorder (디지털 비디오 리코더에 의한 이동 측량 기법 연구)

  • 함창학;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.229-236
    • /
    • 2003
  • This study recorded an object using a digital video recorder, and then tried to estimate 3-D positional information and to reconstruct an image. Firstly, the accuracy of measurement results from a video recorder was evaluated and tested for an applicability, then it applied to a real object to construct 3-D digital model. This study assumed that there is no lens distortion in a video recorder, and all bundles should precisely pass through the projection center of a lens. The image size for orientations is determined by the size of CCD chip and the number of pixels. The average squared error from the result by a digital video recorder and that by triangular survey from 1-second theodolite shows 0.0173m error in x,y coordinates. Without knowing the accurate information on the lens distortion and the coordinates of the projection center, this study reasonably produces acceptable results in the reconstruction of 3-D model. In consequence, this study found that the image from a digital video camera can be reconstructed 3-D model only from the information on a camera type.

The Technical Benefits of Future GNSS for Taiwan

  • Chiang, Kai-Wei;Yang, Ming;Tsai, Meng-Lun;Chang, Yao-Yun;Chu, Chi-Kuang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.3-8
    • /
    • 2006
  • The next decade promises drastic improvements and additions to global navigation satellite systems (GNSS). Plans for GPS modernization include a civilian code measurement on the L2 frequency and a new L5 signal at 1176.45 MHz. Current speculations indicate that a fully operational constellation with these improvements could be available by 2013. Simultaneously, the Galileo Joint Undertaking is in the development and validation stages of introducing a parallel GNSS called Galileo. Galileo will also transmit freely available satellite navigation signals on three frequencies and is scheduled to be fully operational as early as 2008. In other words, a dual system receiver (e.g., GPS+GALILEO) for general users can access six civil frequencies transmitted by at least fifty eights navigation satellites in space. The advent of GALILEO and the modernization of GPS raise a lot of attention to the study of the compatibility and interoperability of the two systems. A number of performance analyses have been conducted in a global scale with respect to availability, reliability, accuracy and integrity in different simulated scenarios (such as open sky and urban canyons) for the two systems individually and when integrated. Therefore, the scope of this article aims at providing the technical benefits analysis for Taiwan specifically in terms of the performance indices mentioned above in a local scale, especially in typical urban canyon scenarios. The conclusions gained by this study will be applied by the Land Survey Bureau of Taiwanese as the guideline for developing future GNSS tracking facilities and dual GNSS processing module for precise surveying applications in static and kinematic modes.

  • PDF

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

The Monitoring Study of Exchange Cycle of Automatic Transmission Fluid (자동변속기유(ATF) 교환주기 모니터링 연구)

  • Lim, Young-Kwan;Jung, Choong-Sub;Lee, Jeong-Min;Han, Kwan-Wook;Na, Byung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.274-278
    • /
    • 2013
  • Automatic transmission fluid (ATF) is used as an automatic transmission in the vehicle or as a characterized fluid for automatic transmission. Recently, vehicle manufacturers usually guarantee for changing fluids over 80000~100000 km mileage or no exchange. However, most drivers usually change ATF below every 50000 km driving distance when driving in Republic of Korea according to a survey from the Korea Institute of Petroleum Management which can cause both a serious environmental contamination by the used ATF and an increase in the cost of driving. In this study, various physical properties such as flash point, pour point, kinematic viscosity, dynamic viscosity at low temperature, total acid number and four-ball test were investigated for both fresh ATF and used ATF after the actual vehicle driving distance of 50000 km and 100000 km. It was shown that most physical properties were suitable for the specification of ATF, but the foam characteristics of the used oil after running 100000 km was unsuitable for the specification of fresh ATF. Therefore, the exchange cycle of ATF every 80000~100000 km driving distance is recommended considering great positive contributions to preventing environmental pollution and reducing driving cost.

Characterization of Fault Kinematics based on Paleoseismic Data in the Malbang area in the Central Part of the Ulsan Fault Zone (고지진학적 자료를 이용한 울산단층대 중부 말방지역에서의 단층운동 특성 해석)

  • Park, Kiwoong;Prasanajit, Naik Sambit;Gwon, Ohsang;Shin, Hyeon-Cho;Kim, Young-Seog
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.151-164
    • /
    • 2022
  • According to the records of historical and instrumental earthquakes, the southeastern part of the Korean Peninsula is considered the highest seismic activity area. Owing to recent reports of numerous Quaternary faults along the Yangsan and Ulsan fault zones, paleoseismological studies are being actively conducted in these areas. The study area is located in the central part of the Ulsan fault zone, where the largest number of active faults have been reported. Based on lineament and geomorphic analysis using LiDAR images and aerial photographs, fault-related landforms showing topographic relief were observed and a trench survey was conducted. The trench length 20 m, width 5 m, depth 5 m is located approximately 300 m away to the northeast from the previously reported Malbang fault. From the trench section, we interpreted the geometric and kinematic characteristics of the fault based on the deformed features of the Quaternary sedimentary layers. The attitude of the reverse fault, N26°W/33°NE, is similar to those of the reported faults distributed along the Ulsan fault zone. Although a single apparent displacement of approximately 40 cm has been observed, the true displacement could not be calculated due to the absence of the slickenline on the fault plane. Based on the geochronological results of the cryogenic structure proposed in a previous study, the most recent faulting event has been estimated as being earlier than the late Wurm glaciation. We interpreted the thrust fault system of the study area as an imbrication structure based on the previous studies and the fault geometry obtained in this additional trench. Although several previous investigations including many trench surveys have been conducted, they found limited success in obtaining the information on fault parameters, which could be due to complex characteristics of the reverse fault system. Additional paleoseismic studies will contribute to solving the mentioned problems and the comprehensive fault evolution.

Availability Assessment of Single Frequency Multi-GNSS Real Time Positioning with the RTCM-State Space Representation Parameters (RTCM-SSR 보정요소 기반 1주파 Multi-GNSS 실시간 측위의 효용성 평가)

  • Lee, Yong-Chang;Oh, Seong-Jong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.107-123
    • /
    • 2020
  • With stabilization of the recent multi-GNSS infrastructure, and as multi-GNSS has been proven to be effective in improving the accuracy of the positioning performance in various industrial sectors. In this study, in view that SF(Single frequency) GNSS receivers are widely used due to the low costs, evaluate effectiveness of SF Real Time Point Positioning(SF-RT-PP) based on four multi-GNSS surveying methods with RTCM-SSR correction streams in static and kinematic modes, and also derive response challenges. Results of applying SSR correction streams, CNES presented good results compared to other SSR streams in 2D coordinate. Looking at the results of the SF-RT-PP surveying using SF signals from multi-GNSS, were able to identify the common cause of large deviations in the altitude components, as well as confirm the importance of signal bias correction according to combinations of different types of satellite signals and ionospheric delay compensation algorithm using undifferenced and uncombined observations. In addition, confirmed that the improvement of the infrastructure of Multi-GNSS allows SF-RT-SPP surveying with only one of the four GNSS satellites. In particular, in the case of code-based SF-RT-SPP measurements using SF signals from GPS satellites only, the difference in the application effect between broadcast ephemeris and SSR correction for satellite orbits/clocks was small, but in the case of ionospheric delay compensation, the use of SBAS correction information provided more than twice the accuracy compared to result of the Klobuchar model. With GPS and GLONASS, both the BDS and GALILEO constellations will be fully deployed in the end of 2020, and the greater benefits from the multi-GNSS integration can be expected. Specially, If RT-ionospheric correction services reflecting regional characteristics and SSR correction information reflecting atmospheric characteristics are carried out in real-time, expected that the utilization of SF-RT-PPP survey technology by multi-GNSS and various demands will be created in various industrial sectors.