DOI QR코드

DOI QR Code

Characterization of Fault Kinematics based on Paleoseismic Data in the Malbang area in the Central Part of the Ulsan Fault Zone

고지진학적 자료를 이용한 울산단층대 중부 말방지역에서의 단층운동 특성 해석

  • Park, Kiwoong (Department of Earth & Environmental Sciences, Pukyong National University) ;
  • Prasanajit, Naik Sambit (Active Fault & Earthquake Mitigation Institute, Pukyong National University) ;
  • Gwon, Ohsang (Department of Earth & Environmental Sciences, Pukyong National University) ;
  • Shin, Hyeon-Cho (Active Fault & Earthquake Mitigation Institute, Pukyong National University) ;
  • Kim, Young-Seog (Department of Earth & Environmental Sciences, Pukyong National University)
  • 박기웅 (부경대학교 지구환경과학과) ;
  • 정숙진 (부경대학교 활성단층 및 지진재해저감연구소) ;
  • 권오상 (부경대학교 지구환경과학과) ;
  • 신현조 (부경대학교 활성단층 및 지진재해저감연구소) ;
  • 김영석 (부경대학교 지구환경과학과)
  • Received : 2022.02.09
  • Accepted : 2022.02.28
  • Published : 2022.02.28

Abstract

According to the records of historical and instrumental earthquakes, the southeastern part of the Korean Peninsula is considered the highest seismic activity area. Owing to recent reports of numerous Quaternary faults along the Yangsan and Ulsan fault zones, paleoseismological studies are being actively conducted in these areas. The study area is located in the central part of the Ulsan fault zone, where the largest number of active faults have been reported. Based on lineament and geomorphic analysis using LiDAR images and aerial photographs, fault-related landforms showing topographic relief were observed and a trench survey was conducted. The trench length 20 m, width 5 m, depth 5 m is located approximately 300 m away to the northeast from the previously reported Malbang fault. From the trench section, we interpreted the geometric and kinematic characteristics of the fault based on the deformed features of the Quaternary sedimentary layers. The attitude of the reverse fault, N26°W/33°NE, is similar to those of the reported faults distributed along the Ulsan fault zone. Although a single apparent displacement of approximately 40 cm has been observed, the true displacement could not be calculated due to the absence of the slickenline on the fault plane. Based on the geochronological results of the cryogenic structure proposed in a previous study, the most recent faulting event has been estimated as being earlier than the late Wurm glaciation. We interpreted the thrust fault system of the study area as an imbrication structure based on the previous studies and the fault geometry obtained in this additional trench. Although several previous investigations including many trench surveys have been conducted, they found limited success in obtaining the information on fault parameters, which could be due to complex characteristics of the reverse fault system. Additional paleoseismic studies will contribute to solving the mentioned problems and the comprehensive fault evolution.

역사지진과 계기지진 기록에 따르면 한반도 남동부는 우리나라에서 지진활성도가 가장 높게 평가되는 곳으로, 최근에 양산단층대와 울산단층대를 따라 제4기 단층이 다수 보고되어 고지진학적 연구가 활발하게 이루어지고 있다. 특히 울산단층대의 중부지역에 해당하는 경북 경주시 외동읍 말방리 일원은 울산단층대 내에서 가장 많은 활성단층이 보고된 지역이다. 따라서 이 지역에 대한 고지진학적 특성을 이해하기 위하여 먼저 LiDAR 영상 및 항공사진을 이용한 지형 및 선형구조 분석을 실시하여 단층에 의한 기복으로 추정되는 지형인자를 확인하고, 야외답사와 물리탐사를 통해 단층을 추적하여 기 보고된 말방단층 지점에서 약 300 m 북서쪽에 위치한 곳에서 길이 20 m, 너비 5 m, 깊이 5 m의 굴착조사를 실시하였다. 굴착단면을 통해 분석된 제4기 퇴적층의 특징을 바탕으로 단층의 기하학적·운동학적 특성을 해석하여 고지진학적 특성을 규명하고자 하였다. 이번 굴착단면에서 확인된 역단층의 기하를 보이는 단층의 자세는 N26°W/33°NE로 울산단층대를 따라 분포하는 기 보고된 단층들과 유사하다. 약 40 cm의 단일 겉보기 변위가 인지되었으나 단층조선의 부재로 실변위는 산출할 수 없었다. 선행연구에서 제안된 극저온구조층의 연대결과 값을 토대로 단층의 최후기 운동시기는 후기 뷔름빙기 이전으로 추정하였다. 기 보고된 연구결과와 본 굴착단면에서 획득한 단층기하를 종합하여 이 지역에 발달하는 단층계를 인편상구조로 해석하였고, 단층특성을 반영한 모델을 제시하였다. 말방리 일원에서 수 회의 굴착조사를 비롯한 다수의 선행연구가 수행되었음에도 불구하고 구체적인 단층변수에 대한 정보가 미진하고 각 지점들 간의 상관성이 명확하게 규명되지 않은 것은 역단층의 복잡한 운동학적 특성에 기인한 것으로 판단된다. 추후 고지진학적 연구가 추가적으로 수행된다면 상기의 문제점들을 해결하여 종합적인 단층의 형태와 운동사가 규명될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 통해 수행된 연구과제입니다(No.20201510100020). 본 눈문을 투고하기까지 세심한 검토와 건설적인 조언을 해주신 두 분의 심사위원님과 편집위원장님께 진심으로 감사드립니다. 연구를 도와주신 부경대학교 지질구조재해연구실 연구원분들에게 감사드립니다.

References

  1. Baag, C.-E. and Kang, D.J., 1994, Geophysical studies on major faults in the Gyeongsang basin: Aeromagnetic and radiometric data interpretation on the Ulsan fault. Journal of the Geological Society of Korea, 30(2), 193-205.
  2. Chang, T.W., 2000, Crustal uplift due to Quaternary faulting at the northeastern block of the Ulsan fault in the southeastern Korean Peninsula. Proceedings of the Hokudan International Symposium and School on active faulting, 497-501.
  3. Chang, T.W., 2001, Quaternary tectonic activity at the eastern block of the Ulsan fault. Journal of the Geological Society of Korea, 37, 431-444.
  4. Cho, K.-H., Takagi, H., Iwamura, A., Awaji, D., Chang, T.W., Shon, S.-W., Itaya, T. and Okada, T., 2001, Timing of the hydrothermal alteration associated with the fault activities along the Ulsan fault zone, southeast Korea. Economic and environmental Geology, 34(6), 583-593.
  5. Choi, J.-H., S.-J. Yang., S.-R. Han. and Y.-S. Kim., 2015, Fault zone evolution during Cenozoic tectonic inversion in SE Korea. J. Asian Earth Sci. 98, 167-177. https://doi.org/10.1016/j.jseaes.2014.11.009
  6. Choi, P.-Y., Lee, C.-B., Ryoo, C.-R., Choi, Y.-S., Kim, J.- Y., Hyun, H.-J., Kim, Y.-S., Kim, J.-Y. and Chwae, U.- C., 2002, Geometric analysis of the Quaternary Malbang Fault: Interpretation of bore hole and surface data. Journal of the Geological Society of Korea, 38, 163-174.
  7. Choi, S.-J., Jeon, J.-S., Song, K.-Y., Kim, H.-C., Kim, Y.- H., Choi, P.-Y., Chwae, U.C., Han, J.-G., Ryoo, C.-R., Sun, C.-G., Jeon, M.S., Kim, G.-Y., Kim, Y.-B., Lee, H.-J., Shin, J.S., Lee, Y.-S. and Kee, W.-S., 2012, Active faults and seismic hazard map. NEMA, Seoul, 882p.
  8. Choi, S.-J., Jeon, J.-S., Choi, J.-H., Kim, B.-C., Ryoo, C.- R., Hong, D.-G. and Chwae, U.-C., 2014, Estimation of possible maximum earthquake magnitudes of Quaternary faults in the southern Korean Peninsula. Quaternary International, 344, 53-63. https://doi.org/10.1016/j.quaint.2014.05.052
  9. Choi, S.-J., Kim, Y. S., Cheon, Y. and Ko, K., 2019, The first discovery of Quaternary fault in the western part of the south Yangsan Fault-Sinwoo Site. Economic and environmental Geology, 52(3), 251-258. https://doi.org/10.9719/EEG.2019.52.3.251
  10. Choi, W.-H., 2003, Neotectonics of the Gyeongju-Ulsan area in the southeastern part of Korean Peninsula. Paper of Doctors degree, Seoul National University graduate school, 205p.
  11. Dunne, W.M. and Ferrill, D. A., 1988, Blind thrust systems. Geology, 16(1), 33-36. https://doi.org/10.1130/0091-7613(1988)016<0033:BTS>2.3.CO;2
  12. Dolan, J.F., Christofferson, S. A, and Shaw, J. H., 2003, Recognition of paleoearthquakes on the Puente Hills blind thrust fault, California. Science, 300(5616), 115-118. https://doi.org/10.1126/science.1080593
  13. Geological survey of Korea, 1922, 1/50,000 geological map CHOYO sheet.
  14. Gwon, O., Park, K., Naik., S. P., H.C Shin. and Kim, Y.- S., 2021, A study on the characteristics of fault activity in the southern part of the Ulsan fault using paleoseismic method. Journal of the Geological Society of Korea, 57(2), 109-121. https://doi.org/10.14770/jgsk.2021.57.2.109
  15. Hwang, S.-I., 1998, The geomorphic development of alluvial fans and tectonic movements at Ha-Dong, Kyungju-City. Journal of the geomorphological association of Korea, 5, 189-200.
  16. Hwang, S.-I. and Yoon, S.-O., 2001, The distribution and geomorphic development of alluvial fans along the Bulguksa fault system in Gyeongju and Ulsan city, southeastern Korea. Journal of the Korean Geographical Society, 36, 217-232.
  17. Jin, K., Kim, Y.-S., Kang, H.C. and Shin, H.C., 2013, Study on developing characteristics of the Quaternary Gusan Fault in Uljin, Gyeongbuk, Korea. Journal of the Geological Society of Korea, 49(2), 197-207.
  18. Kee, W.-S., Kim, B. C., Hwang, J. H., Song, K.-Y. and Kihm, Y.-H., 2007, Structural characteristics of Quaternary reverse faulting on the Eupcheon Fault, SE Korea. Journal of the Geological Society of Korea, 43(3), 311-333.
  19. Kim, J.H., Kang, P.C. and Lim, J.U., 1976, A study of the Relation between geologic structures and ore deposits using Landsat-1 Images. Journal of the Geological Society of Korea, 2, 79-89.
  20. Kim, J., Oh, K.-C. and Choi, H., 2018, OSL dating in the sediments including soil wedge structures. Journal of the Geological Society of Korea, 54(2), 183-191. https://doi.org/10.14770/jgsk.2018.54.2.183
  21. Kim, K., Kim, D.-H., Shin, H. and Kim, Y.-J., 2002, Geological structures of the Ulsan fault in Yaksoo area of Ulsan using the method of refraction travel-time tomography. Journal of the Geological Society of Korea, 38(4), 509-518.
  22. Kim, M.-C., Jung, S.-H., Yoon, S.-W., Jeong, R.-Y., Song, C.-W. and Son, M., 2016, Neotectonic crustal deformation and current stress field in the Korean Peninsula and their tectonic implications: A Review. The Journal of the Petrological Society of Korea, 25, 169-193. https://doi.org/10.7854/JPSK.2016.25.3.169
  23. Kim, T.-H., Shin, H.-C. and Kim, Y.-S., 2020, Characteristics of the topographical deformation in the central part of the Ulsan fault. Journal of the Geological Society of Korea, 56(2), 193-209. https://doi.org/10.14770/jgsk.2020.56.2.193
  24. Kim, Y-S., Andrews, J.R. and Sanderson, D.J., 2001, Reactivated strike-slip faults: examples from north Cornwall, UK. Tectonophysics, 340, 173-194. https://doi.org/10.1016/S0040-1951(01)00146-9
  25. Kim, Y.-S., Jin, K.-M., Choi, W.-H. and Kee, W.-S., 2011, Understanding of active faults: A review for recent researches. Journal of the Geological Society of Korea, 47(6), 723-752.
  26. Kim, Y.-S., Kim, T.-H., Kyung, J.-B., Cho, C.-S., Choi, J.- H. and Choi, C.-U., 2017, Preliminary study on rupture mechanism of the 9.12 Gyeongju Earthquake. Journal of the Geological Society of Korea, 53, 407-422. https://doi.org/10.14770/jgsk.2017.53.3.407
  27. Kim, Y.-S., Park, J.Y., Kim, J.H., Shin, H.C and Sanderson, D.J., 2004, Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea. The Island Arc, 13, 403-415. https://doi.org/10.1111/j.1440-1738.2004.00435.x
  28. Knipe, R.J., 1985, Footwall geometry and the rheology of thrust sheets. Journal of Structural Geology, 7(1), 1-10. https://doi.org/10.1016/0191-8141(85)90110-5
  29. Kyung, J.-B., 1997, Paleoseismological study on the midnorthern part of Ulsan Fault by trench method. The Jounal of Engineering Geology, 7(1), 81-90.
  30. Lee, C., Hamid, Z. A. and Lee, W. C., 2000, Quantitative modelling and understanding the evolution and distribution of reservoirs in West Sabah continental margin, Malaysia. (Poster 6)
  31. Lee, D.Y., 1987, Stratigraphic Research of the Quaternary deposits in the Korean Peninsula. The Korean journal of Quaternary research, 1(1), 3-20.
  32. Lee, G.-R., Park, C.-S. and Shin, J.-R., 2018, Distribution of fault-related landforms and lineaments along the Ulsan fault zone. Journal of the Korean geomorphological association, 25(3), 89-103.
  33. Lee, J.-H., Rezaei. S., Hong, Y.-J., Choi, J.-H., Choi, J.-H., Choi, W.-H., Rhee. K.-W. and Kim, Y.-S., 2015, Quaternary fault analysis through a trench investigation on the northern extension of the Yangsan fault at Dangu-ri, Gyungju-si, Gyeongsangbuk-do. Journal of the Geological Society of Korea, 51(5), 471-485. https://doi.org/10.14770/jgsk.2015.51.5.471
  34. Lee, J.M., Kong, Y.-J., Chang, T.W., Park, D. and Kim, T., 2000, Shallow subsurface structure of the Yaksoo area, Ulsan Korea by geophysical surveys. Journal of Korean Geophysical Society, 3, 57-66.
  35. Lee, K. and Um, C.R., 1992, Geoelectric survey of the Ulsan fault: Geophysical studies on major faults in the Kyeongsang basin. Journal of the Geological Society of Korea, 28, 32-39.
  36. McCalpin, J. P., 2009, Paleoseismology: 2nd ed. Academic Press, San Diego, 613 p.
  37. McClay, K.R., 1992, Glossary of thrust tectonic terms, Thrust Tectonics. Chapman & Hall, London, pp. 419-433.
  38. Naik, S.P., Gwon, O., Porfido, S., Park, K., Jin, K., Kim, Y.-S. and Kyung, J. B., 2020, Intensity reassessment of the 2017 Pohang earthquake Mw=5.4 (South Korea) Using ESI-07 Scale. Geosciences, 10(11), 471. https://doi.org/10.3390/geosciences10110471
  39. Oh, K.S., Park, Y.A. and Kim, Y.S., 1995, The paleoenvironment of the western coastal area of the Korean peninsula based on charateristic cryoburation evidence from the Kanweoldo deposits, Cheonsoo bay, west coast of Korea. Korean Journal of Quaternary Research, 9, 34-43.
  40. Okada, A., Watanabe, M., Suzuki, Y., Kyung, J.-B., Jo, W.- R. and Kim, S.-K., 1995, Active fault topography and fault outcrops in the central part of the Ulsan fault system, southeastern Korea. Program of Japan Earth and Planetary Science Joint Meeting, A31-R22, 40.
  41. Okada, A., Watanabe, M., Suzuki, Y., Kyung, J.-B., Jo, W.- R., Kim, S.-K., Oike, K. and Nakamura, T., 1998, Active fault topography and fault outcrops in the central part of the Ulsan fault system, southeast Korea, Journal of Geography, 107, 644-658. https://doi.org/10.5026/jgeography.107.5_644
  42. Ryoo, C.-R., 2009, A report for the Quaternary Gaegok 6 Fault developed in the Mid-eastern part of Ulsan fault zone, Korea. Economic and Environmental Geology, 42, 635-643.
  43. Shon, H., Yun, H. and Oh, J., 1999, Deep structure of Ulsan Fault by electric and EM surveys in Ipsil area, south of Kyeongju. Economic and environmental Geology, 32(2), 161-167.
  44. Sibson, R.H., 1985, A note an fault reactivation. Journal of Structural Geology, 7, 751-754. https://doi.org/10.1016/0191-8141(85)90150-6
  45. Yang, J.-S., 2006, Quaternary fault activity in the southeastern part of the Korean peninsula. Paper of Doctors degree, Kangwon National University graduate school.
  46. Yoon, S.-O. and Hwang, S.-I., 1999, The active fault topography of the northern part of the Bulguksa fault system in Kyungju city, southeastern Korea, Journal of the Korean Geographical Society, 34(3), 231-246.
  47. Yoon, S.-O. and Hwang, S.-I., 2004, The geomorphic development of alluvial fans in the Gyeongju City and Cheonbuk area, southeastern Korea. Journal of the Korean Geography Association, 39(1), 56-69.