• Title/Summary/Keyword: Kinematic Isotropic Index

Search Result 19, Processing Time 0.026 seconds

Analysis on Kinematic Characteristics for a Translational 3-DOF Parallel Mechanism with Constrained Stewart Platform Structure (스튜워트 플랫폼 구조를 이용한 병진 3-자유도 병렬 메커니즘의 기구학 특성 분석)

  • 이석희;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.525-529
    • /
    • 2004
  • A novel translational 3-dof parallel mechanism is proposed and analyzed. The mechanism consists of three RRPS serial subchains and an additional passive 3-dof type serial subchain. Three RRPS serial subchains alone may form a structure of the 6-DOF Stewart Platform mechanism. However, in the proposed mechanism, an additional passive serial subchain acts as constraints to restrict the output motion of the mechanism in 3-DOF translational space. The closed form position solutions of the proposed mechanism and its first-order kinematic model are derived. Then its workspace size and kinematic characteristics are examined via kinematic isotropic index.

  • PDF

Analysis on Kinematic Characteristics for a Spherical 3-DOF Parallel Mechanism with Constrained Stewart Platform Structure (스튜워트 플랫폼 구조를 이용한 구형 3-자유도 병렬 메커니즘의 기구학 특성 분석)

  • 이석희;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.520-524
    • /
    • 2004
  • In this work, a novel spherical 3-dof parallel mechanism is proposed and analyzed. The mechanism consists of three RRPS serial subchains and an additional passive 3-dof type serial subchain. Three RRPS serial subchains alone may form a structure of 6-DOF Stewart Platform mechanism. However, in the proposed mechanism, an additional passive serial subchain acts as constraints to restrict the output motion of the mechanism within 3-DOF spherical space. The closed form solutions of position analysis of the proposed mechanism and its first-order kinematic model are derived. Then its workspace size and kinematic characteristics are examined via kinematic isotropic index.

  • PDF

Analysis on Kinematic Characteristics for Spatial 3-DOF Parallel Mechanisms Employing Stewart Platform Structure (스튜워트 플랫폼 구조를 이용한 공간형 3자유도 병렬 메커니즘의 기구학 특성 분석)

  • Lee Seok Hee;Lee Jung Hun;Kim Whee Kuk;Yi Byung Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.118-127
    • /
    • 2005
  • A spatial 3 degrees-of-freedom mechanism employing Stewart Platform structure is proposed: the mechanism maintains the 3- RRPS structure of Stewart Platform but has an additional passive PRR serial sub-chain at the center area of the mechanism in order to constrain the output motion of the mechanism within the output motion space of the added PRR serial subchain. The forward and reverse position analyses of the mechanism are performed. Then the mechanism having both the forward and the reverse closed-form solutions is suggested and its closed form solutions are derived. It is confirmed, through the kinematic analysis of those two proposed mechanisms via kinematic isotropic index, that both the proposed mechanisms have fairly good kinematic characteristics compared to the existing spatial 3-DOF mechanisms in literature.

Implementation of a New Parallel Spherical 3-Degree-of-Freedom Mechanism With Excellent Kinematic Characteristics (우수한 기구학 특성을 가지는 새로운 병렬형 구형 3자유도 메커니즘의 구현)

  • 이석희;김희국;오세민;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.299-303
    • /
    • 2004
  • In our pervious paper, a new parallel-type spherical 3-degree-of-freedom mechanism consisting of a two-degree-of-freedom parallel module and a serial RRR subchain was proposed[1]. In this paper, its improved version is suggested and implemented. Differently from the previous 3-dof spherical mechanism, gear chains are incorporated into the current version of the mechanism to drive the distal revolute joint of the serial subchain from the base of the mechanism and in fact, the modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, after a brief description on its structure, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model of the mechanism for the inputs which are assumed to be located at the base is derived. Thirdly, through the simulations of the kinematic analysis via. kinematic isotropic index, it is confirmed that the mechanism has much more improved isotropic properties throughout the workspace of the mechanism than the previous mechanism in [1]. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

  • PDF

Design of an Omni-directional mobile Robot with 3 Caster Wheels

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju;Yang, Sung-Il;You, Bum-Jae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.210-216
    • /
    • 2001
  • In this paper, design of a 3-degree-of-freedom mobile robot with three caster wheels is performed. Initially, kinematic modeling and singularity analysis of the mobile robot is performed. It is found that the singularity can be avoided when the robot has more than two wheels on which two active joints are located. Optimal kinematic parameters of mobile robots with three active joint variables and with four active joint variables are obtained and compared with respect to kinematic isotropic index of the Jacobian matrix of the mobile robot which is functions of the wheel radius and the length of steering link.

  • PDF

Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator (정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용)

  • 김희국;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

Kinematic Manipulability Analysis of the Casing Oscillator (케이싱 오실레이터의 기구학적 조작성 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.904-914
    • /
    • 2004
  • In this paper, input-output velocity and force transmission characteristics of the Casing Oscillator which is a construction machine with 4 degrees of freedom are examined. After the Jacobian matrix is decomposed into the linear part and angular part, the velocity and force transmission characteristics for the linear and angular workspace are easily analyzed and visualized even if the Casing Oscillator has the spatial dimensional workspace with 4 DOF. Regarding the manipulability measure of the Casing Oscillator, the kinematic isotropic index and the manipulability measure which represent the isotropy and volume of the manipulability ellipsoid, respectively, are combined to coincidently consider them with respect to equivalent ranges and fluctuations. A performance of the Casing Oscillator is evaluated by the newly proposed manipulability measures.

Optimum Design of a New 4-DOF Parallel Mechanism

  • Chung, Jae-Heon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.302-307
    • /
    • 2005
  • Recently, lots of parallel mechanisms for spatial 3-DOF and 6-DOF were investigated. However, research on 4-DOF and 5-DOF parallel mechanisms has been very few. In this paper, we propose a 4-DOF parallel mechanism that consists of 3-rotational and 1-translational motions. The kinematic characteristics of this mechanism are analyzed in terms of an isotropic index and maximum force transmission ratio, and its kinematic optimization is being conducted to ensure enhanced kinematic performances

  • PDF

Manipulability Analysis of the Casing Oscillator (케이싱 오실레이터의 조작성 해석)

  • 남윤주;이육형;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1693-1696
    • /
    • 2003
  • In this paper, input-output velocity transmission characteristics of the Casing Oscillator, which is a constructional machine with 4 degree of freedom are examined. After the Jacobian matrix is decomposed into linear part and angular part, the linear and the angular velocity transmission characteristics are analyzed and visualized in easy way even in the case of 3 dimensional task space with 4 variables. Regarding the measure of dexterity of the Casing Oscillator, the kinematic isotropic index and the manipulability measures which are respectively represented the isotropy and the volume of the manipulability ellipsoid are combined. A performance of the Casing Oscillator is evaluated by the combined manipulability measure.

  • PDF

Study on the Precision Characteristics of a Planar 3 Degrees-of-Freedom Parallel Mechanism (평면형 3 자유도 병렬 메카니즘의 정밀도 특성에 관한 연구)

  • Kim, Jae-Sub;Kim, Hee-Guk;Cho, Hwang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.781-786
    • /
    • 1996
  • In this paper, output precision characteristic of planar 3 and 6 degree-of-freedom parallel mechanisms are investigated. The 6 degree-of-freedom mechanism is formed by adding an additional small link along with an actuated joint in each of serial subchain of the 3 degree-of-freedom mechanism. First, kinematic analysis for two parallel mechanisms are performed, then their first-order kinematic characteristics are examined via isotropic index and minimum velocity transmission ratio of the mechanisms. It can be concluded that the planar 6 degrees-of-freedom parallel mechanism can be very effectively employed as a high-precision macro-micro manipulator from the analysis results when its link lengths are properly chosen.

  • PDF