• 제목/요약/키워드: Kinematic Control

검색결과 646건 처리시간 0.021초

부분 학습구조의 신경회로와 로보트 역 기구학 해의 응용 (A neural network with local weight learning and its application to inverse kinematic robot solution)

  • 이인숙;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.36-40
    • /
    • 1990
  • Conventional back propagation learning is generally characterized by slow and rather inaccurate learning which makes it difficult to use in control applications. A new multilayer perception architecture and its learning algorithm is proposed that consists of a Kohonen front layer followed by a back propagation network. The Kohonen layer selects a subset of the hidden layer neurons for local tuning. This architecture has been tested on the inverse kinematic solution of robot manipulator while demonstrating its fast and accurate learning capabilities.

  • PDF

병렬 운동 기구의 미끄럼 볼 조인트 개발에 관한 연구 (A Study on the Sliding Ball Joint of Parallel Kinematic Mechanism)

  • 유대원;이재학
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.982-989
    • /
    • 2009
  • Parallel Kinematic Mechanism (PKM) is a device to perform the various motion in three-dimensional space and it calls for six degree of freedom. For example, Parallel Kinematic Mechanism is applied to machine tools, medical equipments, MEMS, virtual reality devices and flight motion simulators. Recently, many companies have tried to develop new Parallel Kinematic Mechanism in order to improve the cycle time and the precisional tolerance. Parallel Kinematic Mechanism uses general universal joint and spherical joint, but such joints have accumulated tolerance problems. Therefore, it causes position control problem and dramatically life time reduction. This paper focused on the rolling element to improve sliding precision in new sliding ball joint development. Before the final design and production, it was confirmed that new sliding ball joint held a higher load and a good geometrical structure. FEM analysis showed a favorable agreement with tensile and compressive testing results by universal testing machine. In conclusions, a new sliding ball joint has been developed to solve a problem of accumulated tolerance and verified using tensile and compressive testing as well as FEM analysis.

세바퀴 여유구동 모바일 로봇의 기구학/동력학 모델링 및 해석 (Kinematic/dynamic modeling and analysis of a 3 degree-of-freedom redundantly actuated mobile robot)

  • 박승;이병주;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.528-531
    • /
    • 1997
  • This paper deals with the kinematic and dynamic modeling of a 3 degree-of-freedom redundantly actuated mobile robot for the purpose of analysis and control. Each wheel is driven by two motors for steering and driving. Therefore, the system becomes force-redundant since the number of input variable is greater than the number of output variable. The kinematic and dynamic models in terms of three independent joint variables are derived. Also, a load distribution method to determine the input loads is introduced. Finally we demonstrate the feasibility of the proposed algorithms through simulation.

  • PDF

협조로보트 시스템의 동적 Decoupling과 안정도연구 (A Dynamic Decoupling of Two Cooperating Robot System and Stability Analysis)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권1호
    • /
    • pp.37-43
    • /
    • 1996
  • This paper presents a new control scheme for decoupling the dynamics of two coordinating robot manipulators. A simple full-state feedback scheme with configuration dependent gains can be devised to decouple the system dynamics such that the dynamics of each arm and that of an object held by the two arms is independent of one another. A condition for stability is shown. The advantage of the proposed scheme is that the same control scheme can be applied both for the closed kinematic chain(object-grasping) case and open kinematic chain(no object-grasping) case.

  • PDF

닫힌 형태의 역기구학 해를 갖는 매니퓰레이터의 정밀도 개선 알고리즘 (An Accuracy Improvement Algorithm for the Manipulators with Closed-Form Inverse Kinematic Solutions)

  • 조혜경;조성호
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1093-1098
    • /
    • 2000
  • This paper presents an efficient algorithm for including the kinematic calibration data into the motion controller to improve the positioning accuracy of the manipulators. Rather than spending several iterations for finding the inverse solution of the calibrated kinematics, our approach requires only the nominal inverse solution and the calibrated forward kinematics for providing a better position command promptly. Thus, real-time application is guaranteed whenever the manipulators nominal inverse solution can be expressed in a closed form. Experimental results show that the line tracking performances can be remarkably improved by employing our algorithm.

  • PDF

불출기의 여유자유도와 역기구학 해 (The inverse kinematics and redundancy of reclaimers)

  • 신기태;최진태;이관희;안현식
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.469-475
    • /
    • 1997
  • A method for solving the inverse kinematic problem of reclaimer is presented in this paper. The reclaimers in the raw yard are being used to dig raws and transfer them to the blast furnaces. The kinematic configuration of the reclaimer is different from that of commercially available robots, because it has a rotating disk with several buckets at the end of the boom to dig raws. The reclaimer has a redundancy due to the rotating disk : the degrees of freedom are greater than the number of forward kinematic equations. A plane equation in the 3-dimensional space is determined by using several points adjacent to the reclaiming point of the raw ores pile. A constraint is obtained from the relation ship of the plane equation and trajectories of the bucket of the reclaimer. Finally, a solution of the inverse kinematics of the reclaimer is determined by a numerical method.

  • PDF

로봇발전과 기구학의 역할 (The Role of Kinematics in Robot Development)

  • 염영일
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.333-344
    • /
    • 2014
  • This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.

이동 경화를 고려한 좌굴 및 소성 불안정 유동에 관한 연구 (A Study on Buckling and plastic Instable Flow with Kinematic Hardening)

  • 황두순
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.98-101
    • /
    • 1999
  • The plastic instable flow phenomenon happens in practical forming process I. e. upsetting backward extrusion piercing indentation. And also it is difficult to control precisely the shape and dimensions of forming process. It is found that instabilities of the process are mainly connected with imperfection in the lubrication billet eccentricity inclined punch alignment. In view of the direct relationship between instable material flow and quality defects of the products and it is for better control of forming operation we should necessarily find out their phenomena. In this study we used the friction disturbance due to inclined punch angle and introduced the method considering kinematic hardening effect Analysis of upset forging is carried out using the rigid plastic FEM and slab method with eccentricity.

  • PDF

새로운6자유도 병렬형 햅틱 기구의 최적설계 및 해석 (A New 6-DOF Parallel Haptic Device: Optimum Design and Analysis)

  • 이재훈;김형욱;이병주;서일홍
    • 제어로봇시스템학회논문지
    • /
    • 제9권1호
    • /
    • pp.63-72
    • /
    • 2003
  • A new 6-DOF parallel haptic device is proposed. Many existing haptic devices require large power due to having floating actuator and also have small workspaces. The proposed new mechanism can generate 6-DOF reflecting force. This device is relatively light by employing non-floating actuators and has large workspace. Kinematic analysis and kinematic optimal design is performed for this mechanism. Dexterous workspace, global isotropic index, and global maximum force transmission ratio are considered as kinematic design indices. To deal with such multi-criteria optimization problem. composite design index is employed. For the given operational specifications, actuator sizing for this mechanism is also carried out.

뇌졸중 환자 운동신뢰성 측정치의 통계적 분석 (Statistical Analysis of the Performance Reliability Data for Stroke Patients)

  • 변재현;이승미
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.64-70
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate performance reliability of stroke patients using kinematic analysis. Methods: A protocol to evaluate performance reliability was performed for three tasks on 20 stroke patients and 10 normal people. The tasks include hand to head (HH) task, hand to mouth (HM) task, and hand to target (HT) task. Results: The affected arms showed smaller joint angle, slower peak velocity, longer time to peak velocity for task performances than control group. Also, slower peak velocity and longer movement time for task performance in unaffected arm of stroke patients were obtained compared with the control group. Conclusion: Kinematic analysis is very useful quantitative tool to provide understanding on upper extremity function of stroke patients.