• Title/Summary/Keyword: Kinematic Configuration

Search Result 103, Processing Time 0.023 seconds

Fault-Tolerant Gait Generation of Hexapod Robots for Locked Joint Failures (관절고착고장에 대한 육각 보행 로봇의 내고장성 걸음새 생성)

  • Yang Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.131-140
    • /
    • 2005
  • Fault-tolerant gait generation of a hexapod robot with crab walking is proposed. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. Due to the reduced workspace of a failed leg, fault-tolerant crab walking has a limitation in the range of heading direction. In this paper, an accessible range of the crab angle is derived for a given configuration of the failed leg and, based on the principles of fault-tolerant gait planning, periodic crab gaits are proposed in which a hexapod robot realizes crab walking after a locked joint failure, having a reasonable stride length and stability margin. The proposed crab walking is then applied to path planning on uneven terrain with positive obstacles. i.e., protruded obstacles which legged robots cannot cross over but have to take a roundabout route to avoid. The robot trajectory should be generated such that the crab angle does not exceed the restricted range caused by a locked joint failure.

Uncalibrated Visual Servoing through the Efficient Estimation of the Image Jacobian for Large Residual

  • Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.385-392
    • /
    • 2013
  • An uncalibrated visual servo control method for tracking a target is presented. We define the robot-positioning problem as an unconstrained optimization problem to minimize the image error between the target feature and the robot end-effector feature. We propose a method to find the residual term for more precise modeling using the secant approximation method. The composite image Jacobian is estimated by the proper method for eye-to-hand configuration without knowledge of the kinematic structure, imaging geometry and intrinsic parameter of camera. This method is independent of the motion of a target feature. The algorithm for regulation of the joint velocity for safety and stability is presented using the cost function. Adaptive regulation for visibility constraints is proposed using the adaptive parameter.

Development of Telerobotic Surgery System with Single-Master Multi-Slave (단일마스터 멀티슬레이브형 텔레로보틱스 수술시스템 개발)

  • Hwang, Gil-Gueng;Jin, Tae-Seok;Hashimoto, Hedeki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.918-925
    • /
    • 2006
  • Medical robotics and computer aided surgery in general, and robotic telesurgery in particular, are promising applications of robotics. In this paper, we shows a novel single-master (PHANTOM based single-master multi-slave telerobotic system) multi-slave system using two parallel mechanism micromanipulators as a slave device. After a general introduction to the systems structure and configuration of telerobotic system, a manipulation control strategy to build the system that human and both manipulators perform the cooperative manipulation, is introduced, followed by its kinematic analysis, mapping method, and experimental results.

Isotropy Analysis of Caster Wheeled Mobile Robot with Variable Steering Link Offset (가변 조향링크 옵셋을 갖는 캐스터 바퀴 이동로봇의 등방성 분석)

  • Kim, Sung-Bok;Moon, Byung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1235-1240
    • /
    • 2006
  • Previous isotropy analysis of a caster wheeled omnidirectional mobile robot(COMR) has been made under the assumption that the steering link offset is equal to the caster wheel radius. Nevertheless, many practical COMR's in use take advantage of the steering link offset different from the wheel radius, mainly because of improved stability. This paper presents the isotropy analysis of a fully actuated COMR with variable steering link offset, which can be considered as the generalization of the previous analysis. First, the kinematic model of a COMR under full actuation is obtained based on the orthogonal decomposition of the wheel velocities. Second, the necessary and sufficient conditions for the isotropy of a COMR are derived and examined to categorize three different groups, each of which can be dealt with in a similar way. Third, for each group, the isotropy conditions are further explored so as to identify all possible isotropic configurations completely.

Modeling the Plastic Deformation of Crystals with Thin Precipitates (석출 강화된 단결정의 소성변형에 관한 모델링)

  • Kim J. H.;Han C. S.;Kang T. J.;Chung K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.155-158
    • /
    • 2005
  • Precipitates, present in most commercial alloys, can have a strong influence on strength and hardening behavior of a single crystal. The effect of thin precipitates on the anisotropy of initial slip resistance and hardening behavior of crystals is modeled in this article. For the convenience of the computational derivation and implementation, the material formulation is given in the unrelated intermediate configuration mapped by the plastic part of the deformation gradient. Material descriptions for the considered two phased aggregates consisting in lattice hardening as well as isotropic hardening and kinematic hardening are suggested. Numerical simulations of various loading cases are presented to discuss and assess the performance of the suggested model.

  • PDF

Systematic Isotropy Analysis of Caster Wheeled Mobile Robot with Steering Link Offset Different from Wheel Radius

  • Kim, Sung-Bok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.214-220
    • /
    • 2006
  • This paper presents the systematic isotropy analysis of a fully actuated caster wheeled omnidirectional mobile robot (COMR) with the steering link offset different from the wheel radius, which can be considered as the generalization of the previous analysis. First with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, the necessary and sufficient conditions for the isotropy of a COMR are derived and examined to categorize there different groups, each of which can be dealt with in a similar way. Third, for each group, the isotropy conditions are further explored so as to identify four different sets of all possible isotropic configurations. Fourth, for each set the expressions of the isotropic characteristic length required for the isotropy of a COMR are elaborated.

  • PDF

Development of a 6 degrees-of-freedom micro stage for ultra precision positioning (초정밀작업을 위한 6자유도 마이크로 스테이지의 개발)

  • Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.

Time of Concentration on Impervious Overland (불투수층 사면에서의 도달시간)

  • Yu, Dong-Hun;Jeon, U-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.195-205
    • /
    • 2000
  • Many types of factors were devised to calculate time of concentration. Singh(976) derived time of concentration of overland flow using kinematic wave theory for plane, converging, and diverging geometric configurations. The present paper investigated the time of concentration for particularly plane geometric configuration. A theoretical equation of time of concentration is derived based on the assumption of impervious overland flow as in the open channel flow. The study characterized the overland flow by many types of characteristic flow such as rough turbulent flow, smooth turbulent flow, laminar flow, and then suggested a theoretical equation on each flow condition. The present paper further considered the rainfall intensity as a main factor and devised an approximate composite equation reflecting the effect of rainfall intensity given at various return periods.

  • PDF

Design of All-in-One Descending Lifeline with Reduced Usage Time (사용시간이 단축된 일체형 완강기 설계)

  • Yun, Seul-Gi;Park, Jung-Woo;Jung, Geun-Hak;Jung, Min-Hee;Kang, Sangwook;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.21-26
    • /
    • 2020
  • A descending lifeline is the only self-escape fire apparatus for fire in high-rise buildings and is installed in most buildings according to fire-fighting law. However, it is difficult to properly use and quickly evacuate during an emergency due to its complex installation methods and procedures, even if users are pre-educated. In this paper, a new one-touch descending lifeline, which simplifies usage procedures and can be used regardless of whether users are educated, is proposed to solve the drawbacks of the conventional descending lifeline. All separate parts that require additional installation are initially assembled in a box, and the concept of a double square linkage is proposed to enable escape in a single motion of pushing the handle attached to the box. Three steps of kinematic design are explored to determine an appropriate configuration of double square linkage, and its dimensions are determined using Matlab and NX CAD software. The proposed all-in-one descending lifeline also follows the enforcement decree of the Fire Control Act, and its feasibility is verified through fabrication.

Study on Dynamic Crawling of The Five-bar Planar Mechanism (5절 평면형 메커니즘의 동적 포복에 관한 연구)

  • Lee J.H.;Lim N.S.;Kim W.K.;Yi B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1045-1049
    • /
    • 2005
  • In this paper, the dynamic crawling of a five-bar planar mechanism is investigated. One complete cycle of the crawling selected in this study consists of four different steps, i) sliding at one contact point between the mechanism and the ground, ii) changing its configuration without sliding at two contact points, iii) sliding at the other contact point, and iv) again changing its configuration without sliding at two contact points. In this type of crawling, the crawling mechanism maintains the shape of the parallel structure throughout a complete crawling cycle. The modeling algorithm for serial manipulators proposed by M. Thomas and et al.[1] is employed by introducing imaginary joints and links which represent the contact interfaces between the one end of the mechanism and the ground, while the other end of the mechanism is regarded as an end-effector of the imaginary serial manipulator which treats the reaction force and torque at the contact point as external forces. Then, a complete cycle of dynamic crawling of the mechanism is investigated through various computer simulations. The simulation result show that the stable crawling characteristics of the mechanism could be secured when the proper configurations depending on specified frictional constraints are met.

  • PDF