• Title/Summary/Keyword: Kinematic Comparison

Search Result 202, Processing Time 0.018 seconds

Three-dimensional Comparison of Selected Kinematics between Male Medalists and Korean Male Javelin Thrower at the IAAF World Championships, Daegu 2011 (2011 대구 세계육상선수권 대회에 참가한 한국 남자 창던지기 선수와 입상자들의 3차원 운동학적 비교 분석)

  • Chae, Woen-Sik;Yoon, Chang-Jin;Lim, Young-Tae;Lee, Haeng-Seob;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.653-660
    • /
    • 2011
  • The purpose of this study was to compare selected kinematic variables between male medalists and a Korean male javelin thrower at the IAAF World Championships, Daegu 2011. The three medalists and one Korean javelin thrower that participated in the Championships were videotaped using three high-speed cameras (300 frames/s, EX-F1 Exilim, Casio, Japan). The results showed that the release and attitude angles of the Korean male javelin thrower (KMJT) were greater than that of the medalists, whereas the attack angle of the KMJT was smaller than that of the medalists. This study also found that the KMJT clearly had a lower release height than the medalists. As a possible adaptation of his physique to the skill, the KMJT used a small trunk inclination angle and produced greater inclination angles at his upper extremities. These results may be linked to an increase in the release angle of the KMJT. There were some difference between the KMJT and the medalists in terms of the length and duration of the delivery phase. In harmony with the shorter length of the delivery phase, its duration was shorter for the KMJT in comparison to the medalists. Because the delivery stride is considered to be a primary generator of endpoint speed, this decrease in the delivery phase time would decrease the javelin velocity at release. The amount of time taken in the delivery phase may be a critical factor to enhance a javelin thrower's performance. Thus, rhythmic movement training specifically designed for the KMJT will help him attain an optimal throwing position.

Effects of Skill Level and Feet Width on Kinematic and Kinetic Variables during Jump Rope Single Under

  • Jang, Kyeong Hui;Son, Min Ji;Kim, Dae Young;Lee, Myeoung Gon;Kim, You Kyung;Kim, Jin Hee;Youm, Chang Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.99-108
    • /
    • 2017
  • Objective: The purpose of this study was to analyze the effects of skill level and width between feet on kinematic and kinetic variables during jump rope single under with both feet. Method: Fifteen subjects in the skilled group (age: $10.85{\pm}0.40yrs$, height: $142.13{\pm}5.41cm$, weight: $36.97{\pm}6.65kg$) and 15 subjects in the unskilled group (age: $10.85{\pm}0.40yrs$, height: $143.31{\pm}5.54cm$, weight: $40.81{\pm}10.39kg$) participated in this study. Results: Participants in the skilled group minimized the anteroposterior displacement of their center of mass by modifying the width between their feet and decreased the range of motion (ROM) of their trunk in the sagittal plane. The preferred width during the jump rope decreased by 5.61~6.11 cm (32~37%) in comparison to width during static standing. The induced width was increased by 16.44~16.67 cm (82~85%), regardless of skill level. The kinematic variables of the left and right legs of members of the unskilled group were significantly different from those of members in the skilled group regarding the ROM of the hip, knee, and ankle joint. Otherwise, the members of the skilled group were consistent in terms of the kinematic variables of the right and left legs. Conclusion: The preferred width between feet during the jump rope was found to be beneficial for maintaining dynamic stability. The unskilled group exhibited asymmetry in left and right motion within the ranges of motion of the ankle, knee, and hip joints, regardless of the width. Therefore, long-term accurate jump rope motions will contribute to an improvement in the left and right imbalances of the entire body.

Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity (점소성 구성식의 적분에 미치는 선형화 방법의 영향)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

Comparison Evaluation of Distribution Engine Oils in Korea (국내 유통 엔진오일 품질비교 연구)

  • Lim, Young-Kwan;Jeong, Choong-Sub;Lee, Joung-Min;Na, Byung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.639-644
    • /
    • 2014
  • Domestic vehicle companies have been selling genuine engine oils with higher price than that of the same grade of regular engine oils. In this study, our group investigated the properties of engine oils for 14 kinds of the genuine and equivalent regular engine oil (KS product) species under a fresh as well as used condition recovered after 10,000 km driving. From analytic results, genuine engine oils had similar physical properties to regular engine oils under the fresh condition. But recovered regular engine oils had better properties in lubricity, kinematic viscosity and acid number change than those of recovered genuine engine oils.

Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

  • Shariati, M.;Hatami, H.;Torabi, H.;Epakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.753-762
    • /
    • 2012
  • The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

Effect of Pilates Reformer Training on Gait Improvement of Subjects with Asymmetric Pelvic Rotation (필라테스 리포머 운동이 비대칭 골반 돌림을 가진 대상자의 보행 개선에 미치는 효과)

  • Moon, Ok-Kon;Han, Song-E
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.271-278
    • /
    • 2013
  • The purpose of this study was to determine the effect of Pilates Reformer training on gait improvement of subjects with asymmetric pelvic rotation. The seven subjects with greater pelvic rotation in right swing were assessed twice, 4 weeks apart, during which there was submitted to a Pilates Reformer training (three 40 min session per week). The kinematic data consisted of pelvic rotation and flexion angle of hip and knee joint was measured during gait. In comparison between both leg swings, max, min and range values of pelvic rotation was not significantly difference. After training, range of pelvic rotation in right swing was significantly decreased, but in left swing was not. In comparison between both leg swings, the values of max of hip and knee joint angle was significantly difference. After training, max values of angle of knee joint in right swing was significantly increased, but in left swing was not. The result of this study revealed that Pilates Reformer training was effective in improving gait to symmetric pelvic rotation.

Kinematic Variables Comparison of Setter Toss Motion on Volleyball According to Toss Types (배구경기 세터 토스 동작의 운동학적 비교분석)

  • Chung, Nam-Ju;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • Purpose : The purpose of this study was to analyze setter toss motion kinematically according to toss types. Method : Dependent variables were elapsed time, vertical displacement of the body center, the projected speed of the ball, and differences of the joint angle to the target for four setters positioning. Result : There was no significant difference in the time but the ball contact time was shorter when the toss distance of P3 was longer. There was significant difference in the vertical displacement of COM (p<.05). The vertical displacement of COM showed that the vertical movement gradually decreased when the quick distance was longer. The vertical displacement of COM was difference (p<.05), also there was difference of the ball speed (p<.001) at the Release point(E4). There was significant difference in the knee joint angle at a certain moment among the Release(E4) and Landing point(E5)(p<.05). The hip joint was significant difference among the Apex(E2), Ball Touch(E3), Release(E4), and the Landing point(E5) on the surface(E2, E3, E4 p<.05; E5 p<.005). The shoulder angle was significant difference among the Ball Touch(E3), Release(E4) and the Landing point(E5) on the surface(E3, E4 p<.05; E5 p<.001). The elbow was significant difference in the Apex(E2) (p<.05). The wrist was significant difference in the Release(E4) (p<.05). Conclusion : If we find the clue to expect the direction of the setter's ball, we have to fine the clues in the Apex(E2) that hip join and elbow, Ball Touch(E3) that hip joint and shoulder joint, Release(E4) that wrist, elbow, hip joint, and knee joint.

Comparison of Kinematic Factors between Old and Young People during Walking on Level and Uneven Inclined Surfaces (평지와 고르지 않은 지면 경사로 보행 시 고령자와 젊은 성인의 운동학적 요인 비교)

  • Choi, Jin-Seung;Kang, Dong-Won;Mun, Kyung-Ryul;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The purpose of this study was to investigate the changes in walking pattern of the elderly during inclined walkway with uneven surfaces and level walking. 10 young($26.3{\pm}1.3$ years, $174.3{\pm}5.3\;cm$, $69.5{\pm}9.5\;kg$) and 13 elderly($72.4{\pm}5.2$ years, $164.5{\pm}5.4\;cm$, $66.1{\pm}9.6\;kg$) male subjects were participated in the experiment. Experiment consisted of 2 walking conditions: horizontal and inclined walkway with uneven surfaces. 3D motion capturing system were used to acquire and analyze walking motion data with sampling frequency of 120 Hz. To compare differences between conditions, kinematic variables(walking speed, stance-swing ratio, hip joint angle, knee joint angle, ankle joint angle, pelvic rotation angle) were used. Results showed that there were some changes of elderly walking pattern in inclined walkway with uneven surfaces: hip joint(adduction and rotation) and pelvic movement pattern. These changes by inclination and surface may affect gait pattern of young subjects as well as elderly subjects. However, in case of elderly it revealed more unstable gait than the young. Further study is necessary to clarify changes in walking pattern for elderly by considering various gait variables including head movement and various walkway conditions.

Construction of Management System of Road Position Information Using GPS Surveying Data

  • Kim, Jin-Soo;Roh, Tae-Ho;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • This study aims to construct a management system of road position information as part of the build-up to a maintenance and management system of highways. First, information on the positions of the roads were obtained by a real-time kinematic satellite surveying, and then the degree of accuracy was analyzed in comparison with the data of the existing design drawings. The linear coordinates of road center line obtained by using RTK GPS showed about 7.6-13.2cm errors in X and Y directions in the case of the national road No.2 section, and about 8.4-9.2cm errors in the case of local road No.1045 section. These errors were within the tolerance scope regulated by the TS survey, and could be practically used. In the case of vertical alignment, there were about 6.2cm errors in the Z direction in local road No.1045 section. Aerial photographs are normally used in producing numerical maps, and it can be practically used because the tolerance scope of the elevation control point is l0cm when the scale of aerial photographs is 1/1000. The management system of road position information, utilizing Object-Oriented Programming(OOP), was built having the data acquired in this way as the attribute data. The system developed in this way can enable us to spot the positions of road facilities, the target of management with ease, to easily update the data in case of changes in the positions of roads and road facilities, and to manage the positions of roads and road facilities more effectively.

  • PDF

Accuracy Analysis of Code-based PPP-RTK Positioning Utilizing K-SSR Correction Messages Outside the Reference Network

  • Yoon, Woong-Jun;Park, Kwan-Dong;Kim, Hye-In;Woo., Seung;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) refers to a technology that combines PPP with network-RTK in which a user does not directly receive observed data from a reference station but receives State-Space Representation (SSR) messages corrected for error components from a central processing station through Networked Transport of RTCM via Internet Protocol (NTRIP) or Digital Multimedia Broadcasting (DMB) for purposes of positioning. SSR messages, which refer to corrections used in PPP-RTK, are generated by a central processing station using real-time observed data collected from reference stations and account for corrections needed due to the ionosphere, troposphere, satellite orbital errors, satellite time offsets, and satellite biases. This study used a type of SSR message provided in South Korea, known as Korea-SSR (K-SSR), to implement a PPP-RTK algorithm based on code-pseudorange measurements and validated its accuracy within the reference station network. In order to validate the accuracy of the implemented algorithm outside of the network, the K-SSR was extrapolated and applied to positioning in reference stations in Changchun, China (CHAN) and Japan (AIRA). This also entailed a quantitative evaluation that measured improvements in accuracy in comparison with point positioning. The results of the study showed that positioning applied with extrapolated K-SSR correction data was more accurate in both AIRA and CHAN than point positioning with improvements of approximately 20~50%.