• Title/Summary/Keyword: Kimchi use

Search Result 235, Processing Time 0.023 seconds

Microbial Reduction in Kimchi Cabbage Leaves by Washing with Citric Acid and Ethanol (구연산과 에탄올 세척에 의한 배춧잎의 미생물 저감화)

  • Han, Eung Soo;Yang, Ji Hee
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.112-117
    • /
    • 2019
  • The purpose of this study is to develop a method to cultivate lactic acid bacteria (LAB) as a by-product in the fermentation of kimchi through the use of Chinese cabbage leaves. A method to reduce the initial number of microorganisms using citric acid and ethanol to wash cabbage leaves was investigated. In this experiment, Chinese cabbage leaves were washed using a mixture of 3% citric acid and 7% ethanol and the washed cabbage leaves were juiced and used as a sample. The total microorganisms of kimchi cabbage juice (KCJ) was reduced from log 6.53 CFU/g to log 3.69 CFU/g by washing with citric acid and ethanol, and lactic acid bacteria from log 4.40 CFU/g to log 2.01 CFU/g. The salinity of KCJ was appropriate for the growth of lactic acid bacteria but the pH was too low. The yield of washing, juice extraction, and total were 80.82%, 79.32%, and 64.11%, respectively. KCJ made by washing with citric acid and ethanol was good for the culture broth of lactic acid bacteria.

Bacterial Community of Galchi-Baechu Kimchi Based on Culture-Dependent and - Independent Investigation and Selection of Starter Candidates

  • Kim, Tao;Heo, Sojeong;Na, Hong-Eun;Lee, Gawon;Kim, Jong-Hoon;Kwak, Mi-Sun;Sung, Moon-Hee;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.341-347
    • /
    • 2022
  • In this study, the bacterial community of galchi-baechu kimchi was determined using culture-based and culture-independent techniques (next generation sequencing:NGS), and showed discrepancies between results. Weissella koreensis and Pediococcus inopinatus were the dominant species according to the NGS results, while Bacillus species and P. inopinatus were dominant in the culture-dependent analysis. To identify safe starter candidates, sixty-five Bacillus strains isolated from galchi-baechu kimchi using culture-dependent methods were evaluated for their antibiotic resistance, presence of toxin genes, and hemolytic activity. Strains were then assessed for salt tolerance and protease and lipase activity. As a result, four strains-B. safensis GN5_10, B. subtilis GN5_19, B. velezensis GN5_25, and B. velezensis GT8-were selected as safe starter candidates for use in fermented foods.

Fermentative Characteristics of Low-Sodium $Kimchi$ Prepared with Salt Replacement (대체염을 이용한 저 나트륨 김치의 발효 특성)

  • Yu, Kwang-Won;Hwang, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.753-760
    • /
    • 2011
  • This study was carried out to investigate the effects of various kinds of commercial salts, including Hanju salt, Deep sea water salt, $Salicornia$ $herbacea$ salt, Guwoon salt, Bamboo salt and salt replacement for the reduction of Na concentration in $kimchi$. The fermentative characteristics of these salts were determined during the fermentation at $10^{\circ}C$. $kimchi$ using a salt replacement and with $Salicornia$ $herbacea$ salt showed slow changes in their pH values. The use of salt replacement showed the lowest level(0.97%) of the retardation of $kimchi$ fermentation. For the preparation of $kimchi$ that used a low Na, chemical and microbial changes were investigated during the fermentation of process, examining preparations with both table salt and a salt replacement(CS-17). The salinity level of $kimchi$ prepared with table salt(control) and the salt replacement (CS-17) were 2.17~2.5% and 1.72~1.99% during fermentation, respectively. The Na contents of $kimchi$ with CS-17(562.5 mg%) showed a lower level than that with table salt(879.0 mg%). The growth of Leuconostoc sp. was highest ($1.5{\times}10^8$ cfu/g) in $kimchi$ with CS-17 at 6 day-fermentation, but the highest level($2.3{\times}10^7$ cfu/g) in $kimchi$ with table salt was at 7dayfermentation. The cells of $Lactobacillus$ sp. in the $kimchi$ prepared with CS-17 and table salt increased to $3.0{\times}10^8$ cfu/g and $6.0{\times}10^7$ cfu/g at 8day-fermentation, respectively. It was concluded that the use of CS-17 could reduce Na levels in $kimchi$ and mitigate over-maturation.

Housewives발 Consumption Aspects of Korean Fermented Foods in Taejon (대전지역 주부들의 한국발효식품 소비실태)

  • 구난숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.714-725
    • /
    • 1997
  • The purpose of this study was to investigate pattern of consumption of Korean fermented foods. The questionnaires have been collected from 290 housewives in Taejon. Kimchi was the most frequently selected for meal preparation among Korean fermented foods. Ninety seven percentage of housewives used Kimchi over once a day and 87%, every meal. Chin-ganjang, Kuk-ganjang, Kochujang and Doenjang have been consumed over once a day by 47%, 46%, 31% and 27% of housewives respectively, which indicated that those jangs were still essential seasonings for preperation of Korean foods. The percentage of housewives, who did not use Chonggukjang, Jot-kal and Jangatchi, were 18%, 19% and 22% respectively, With the educational level increasing and age decreasing, the frequency of consumption Kimchi, Jangat-chi, Doenjang, Kochujang, Jot-kal and Chonggukjang became lower. Extended family often used Doenjang more than nuclear family. Working housewives utilized more Jot-kal than full time housewives. Seventy four percentage of housewives replied that the consumption of Korean fermented foods came to reduce. The reasons were that the kinds of foods increased(54%), food preference of children was changed (27%), side dishes were increased(10%), and food preference of adults was changed(9%). Kimchi has been made by housewives themselves(86%) and by relatives(11%). It means that most housewives prefer home-made Kimchi. Half of housewives used jangs made by themselves. The younger and the higher in educational level use the less Hey have made of Kimchi and jangs.

  • PDF

Preference and Eating Activities of Chinese for Traditional Korean Kimchi (한국 전통 김치에 대한 중국인들의 기호도와 소비행태에 관한 연구)

  • Kim, Eun-Mi;Kim, Young-Jin;Jeong, Mi-Kyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1641-1645
    • /
    • 2004
  • The purpose of this research is to investigate Chinese's preference and directions for improvement of Kimchi by sensory evaluation, and utilize Kimchi for the China eating habit by survey. Self administered questionnaires were collected 149 Chinese (16~25 yr) residing in Shanghai. About 89.9% of all the participants had eaten Kimchi before the survey. Overall preference about Kimchi was 3.59$\pm$0.62 (5 point: Lickertis scale) and affecting factors for overall preference were taste, appearance, texture, in that order. Chinese answered that tough texture (24.9%), spicy taste (20.5%) and fermented odor (18.1%) were the most important factors in improved quality of Kimchi. They answered that applications of Kimchi with Chinese cuisine are 'side dish with meat cuisine', 'eat with cooked rice, rice-mixed-in-soup, gruel' and 'use ingredients of cook', as similar to Korean's.

Use of Bacteriocin Produced by Lactococcus sp. CU216 with pH Sensitive Liposome Entrapment (Lactococcus sp. CU216이 생산하는 박테리오신을 함유한 pH Sensitive Liposome의 응용)

  • 박성수;김명희;한경식;오세종
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • The objective of this study was to control Kimchi fermentation using pH sensitive bacteriocin entrapping liposome(bacteriocin-liposome). The liposomes were prepared by the reverse-phase evaporation method from a mixture of DPPC(dipalmitoyl phosphatidylcholine, DPPE(dipalmitoyl phosphatidylethanolamine), DOPC(dioleoyl phosphatidylcholine) and cholesterol in a molar ration of 4:2:1:4. The bacteriocin-liposome was disruptured at pH 4 of buffer and was stable at alkaline pHs(6 and 7). Irrespective of the addition of the bacteriocin-liposomes, the pH of every Kimchi sample decreased to 5 during 5 days storage at 5$^{\circ}C$. Kimchi samples treated with bacteriocin-liposomes maintained pH 4 or higher, while Kimchi samples not treated with bacteriocin-liposomes exhibited pH 3.58 or lower. In general, the pH of Kimchi samples stored at 20$^{\circ}C$ decreased faster, compared to that of Kimchi samples stored at 5$^{\circ}C$. The pH of Kimchi samples treated with the bacteriocin-liposomes was 3.9 during 90 days storage, while that of the samples not treated with the bacteriocin-liposomes was 3.68 and 3.32 during 30 days and 90 days storages, respectively. Lactic acid bacteria in Kimchi treated with the bacteriocin-liposome grew relatively slow at 5$^{\circ}C$. The viable cell number of lactic acid bacteria increased up to 4${\times}$10$\^$7/ cells/ml and then decreased to 8${\times}$10$\^$6/ cells/ml during 90 days storage at 5$^{\circ}C$.

Salinity of Representative Korean Foods High in Sodium from Home Meals, Foodservices, and Restaurants (가정식, 급식, 외식 고나트륨 한식 대표 음식의 염도 분석)

  • Jiang, Lin;Shin, Damin;Lee, Yeon-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.23 no.4
    • /
    • pp.333-340
    • /
    • 2018
  • Objectives: This study was conducted to analyze the salinity of representative Korean foods high in sodium to generate data for use as a fundamental resource for setting salinity standards in foods. Methods: A total of 480 foods from 16 representative Korean foods high in sodium were collected from 10 households, 10 industry foodservice establishments, and 10 Korean restaurants in four regions (Capital area, Chungcheong Province, Gyeongsang Province, and Jeolla Province) and analyzed for salinity. Results: Among the foods, stir-fried anchovies (4.07~4.45%) showed the highest salinity, followed by pickled onion (1.86~2.62%), cabbage kimchi (1.83~2.2%), braised burdock and lotus root (1.79~2.17%), and sliced radish kimchi (1.78~1.89%) (p<0.001). The salinity of kimchi from home meals (2.2%) was significantly higher than that of foodservice (1.83%) and restaurant (1.93%) kimchi (p<0.05). Salinity in each group of food was highest in kimchi (1.83~2.04%), followed by braised dishes (1.54~1.78%), steamed dishes (1.0~1.22%), stir-fried dishes (1.02~1.18%), and soup or stew (0.74~1.02%) (p<0.001). The salinity of soup and stew from restaurants (1.02%) was significantly higher than that of home meal (0.84%) and foodservice (0.74%) soup and stew. Conclusions: Determination of the salinity of representative Korean foods known to be high in sodium by eating place is expected to be useful to establishing guidelines for reduction of salinity.

Genomic Analysis of the Extremely Halophilic Archaeon Halobacterium noricense CBA1132 Isolated from Solar Salt That Is an Essential Material for Fermented Foods

  • Lim, Seul Ki;Kim, Joon Yong;Song, Hye Seon;Kwon, Min-Sung;Lee, Jieun;Oh, Young Jun;Nam, Young-Do;Seo, Myung-Ji;Lee, Dong-Gi;Choi, Jong-Soon;Yoon, Changmann;Sohn, Eunju;Rahman, MD. Arif-Ur;Roh, Seong Woon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1375-1382
    • /
    • 2016
  • The extremely halophilic archaeon Halobacterium noricense is a member of the genus Halobacterium. Strain CBA1132 (= KCCM 43183, JCM 31150) was isolated from solar salt. The genome of strain CBA1132 assembled with 4 contigs, including three rRNA genes, 44 tRNA genes, and 3,208 open reading frames. Strain CBA1132 had nine putative CRISPRs and the genome contained genes encoding metal resistance determinants: copper-translocating P-type ATPase (CtpA), arsenical pump-driving ATPase (ArsA), arsenate reductase (ArsC), and arsenical resistance operon repressor (ArsR). Strain CBA1132 was related to Halobacterium noricense, with 99.2% 16S rRNA gene sequence similarity. Based on the comparative genomic analysis, strain CBA1132 has distinctly evolved; moreover, essential genes related to nitrogen metabolism were only detected in the genome of strain CBA1132 among the reported genomes in the genus Halobacterium. This genome sequence of Halobacterium noricense CBA1132 may be of use in future molecular biological studies.

Characterization of Low Temperature-adapted Leuconostoc citreum HJ-P4 and Its Dextransucrase for the Use of Kimchi Starter

  • Yim, Chang-Youn;Eom, Hyun-Ju;Jin, Qing;Kim, So-Young;Han, Nam-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1391-1395
    • /
    • 2008
  • Leuconostoc citreum HJ-P4 is a strain isolated for kimchi fermentation with its low temperature-adapted growth feature and its high dextransucrase activity. The detailed characteristics of cell growth and dextran sucrase activities were investigated at various environmental conditions such as temperatures, pHs, salts, and raw ingredients. This strain showed almost 2-fold higher maximal cell concentration ($X_{max}$) than that of the type culture Leuconostoc mesenteroides B-512F at $10^{\circ}C$. The $X_{max}$ of the strain was maximum at pH 7 and the cell growth was inhibited by salts in a dose-dependent mode up to 7%. Addition of pepper (<6%), garlic (<10%), and ginger (<2%) in kimchi gave no inhibition effect on the growth of HJ-P4. Dextransucrase synthesized by this strain retained over 80% of its maximum activity at $10^{\circ}C$ showing a comparable cold-adapted feature to its host microbe. This culture can be used as a starter culture in the industrial kimchi production giving desirable functions and predominance at low temperature.

Traditional Foods: Historical Perspectives and Future Prospects (문화와 과학의 융합적 관점에서 본 전통음식의 역사 및 미래)

  • Kim, Hee Sup
    • Journal of the Korean Society of Food Culture
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Traditional cuisine reflects cooking traditions shaped by political, economic, social, cultural, and environmental conditions characterized by authenticity and uniqueness. Traditional food is not only a part of our cultural heritage but also a knowledge resource. Application of food science and technology in Korean traditional foods was reviewed from six points of view, including food preservation, fermentation, changes in food materials, utilization of food functionality, and packaging and development of cooking appliances. Books from disparate times were chosen in order to cover a wide range of materials from the past to the present. Food preservation and fermentation techniques were applied to various food materials. Combination of science and skills contributes to the accessibility of diverse food materials and better quality foods. Koreans use assorted and resilient plants, which have an abundance of functional substances such as food materials. Among cooking appliances, microwave oven and refrigerator are the most innovative products with huge influences on food eating patterns as well as lifestyle. Packaging effectively reduces post-harvest preservation losses, and better packaging has technical improvements for storage and distribution. Kimchi was chosen as an example in order to study technology from the past to the present. Availability of Kimchi cabbage, enrichment of functional ingredients, identification of useful microbial species, standardization of recipe for commercialization, prevention of texture softening, introduction of salted Kimchi cabbage and Kimchi refrigerators, and packaging were reviewed. The future of traditional foods in the market will be competitive. First, traditional foods market should be maintained to protect the diversity of food materials. Secondly, tailored foods for individuals should be considered using foods with functional properties. Information on health benefits would provide insights into health and traditional food products. Third, speedy transfer of new technology to the traditional food industry is needed to ensure food quality production and new opportunities in the market. Fourth, safety of traditional foods should be ensured without sacrificing the essential characteristics of culturally important foods. Improvement of logistics, distribution, and facility should be carried out. As demand for convenience foods increases, traditional foods should be developed into products.