• Title/Summary/Keyword: Kim and Shon operator

Search Result 3, Processing Time 0.015 seconds

Suffciency Conditions for Hypergeometric Functions to be in a Subclasses of Analytic Functions

  • Aouf, Mohamed Kamal;Mostafa, Adela Osman;Zayed, Hanaa Mousa
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.235-248
    • /
    • 2016
  • The purpose of this paper is to introduce sufficient conditions for (Gaussian) hypergeometric functions to be in various subclasses of analytic functions. Also, we investigate several mapping properties involving these subclasses.

COSET OF A HYPERCOMPLEX NUMBER SYSTEM IN CLIFFORD ANALYSIS

  • KIM, JI EUN;SHON, KWANG HO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1721-1728
    • /
    • 2015
  • We give certain properties of elements in a coset group with hypercomplex numbers and research a monogenic function and a Clifford regular function with values in a coset group by defining differential operators. We give properties of those functions and a power of elements in a coset group with hypercomplex numbers.

WEAK SOLUTION OF AN ARCH EQUATION ON A MOVING BOUNDARY

  • DAEWOOK KIM;SUDEOK SHON;JUNHONG HA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • When setting up a structure with an embedded shallow arch, there is a phenomenon where the end of the arch moves. To study the so-called moving domain problem, one try to transform a considered noncylindrical domain into the cylindrical domain using the transform operator, as well as utilizing the method of penalty and other approaches. However, challenges arise when calculating time derivatives of solutions in a domain depending on time, or when extending the initial conditions from the non-cylindrical domain to the cylindrical domain. In this paper, we employ the transform operator to prove the existence and uniqueness of weak solutions of the shallow arch equation on the moving domain as clarifying the time derivatives of solutions in the moving domain.