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Abstract. The purpose of this paper is to introduce sufficient conditions for (Gaussian)

hypergeometric functions to be in various subclasses of analytic functions. Also, we inves-

tigate several mapping properties involving these subclasses.

1. Introduction

Let A denote the class of functions f(z) of the form

(1.1) f(z) = z +
∞∑

n=2

anzn,

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}, and let S be
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the subclass of all functions in A, which are univalent. For g(z) ∈ A of the form

(1.2) g(z) = z +
∞∑

n=2

gnzn,

the Hadamard product (or convolution) of the two power series f(z) and g(z) is
given by (see [4]):

(1.3) (f ∗ g)(z) = z +
∞∑

n=2

angnzn = (g ∗ f)(z).

and the integral convolution is defined by (see [4]):

(1.4) (f ~ g)(z) = z +
∞∑

n=2

angn

n
zn = (g ~ f)(z).

We recall some definitions which will be used in our paper.

Definition 1.1. For two functions f(z) and g(z), analytic in U, we say that
the function f(z) is subordinate to g(z) in U, written f(z) ≺ g(z), if there exists a
Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1 such that f(z) =
g(w(z)) (z ∈ U). Furthermore, if the function g(z) is univalent in U, then we have
the following equivalence (see [13]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Definition 1.2. A function f(z) ∈ S is called starlike of order α, denoted by
S∗(α), if f(z) satisfies the following condition:

(1.5) <
{

zf ′(z)
f(z)

}
> α (0 ≤ α < 1; z ∈ U) .

Also, a function f(z) ∈ S is called convex of order α, denoted by K(α), if f(z)
satisfies the following condition:

(1.6) <
{

1 +
zf ′′(z)
f ′(z)

}
> α (0 ≤ α < 1; z ∈ U) .

The classes S∗(α) and K(α) were studied by MacGregor [12], Schild [17], Pinchuk
[14] and others. From (1.5) and (1.6) we can see that

(1.7) f(z) ∈ K(α) ⇐⇒ zf ′(z) ∈ S∗(α).

We denote by S∗ = S∗(0) and K = K(0), the classes of starlike and convex functions,
respectively, (see Robertson [15]).
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Definition 1.3.([7]) For 0 ≤ α < 1, β ≥ 0, −1 ≤ B < A ≤ 1, −1 ≤
B < 0 and g(z) is given by (1.2), we denote by S(f, g;A, B; α, β) the subclass
of S consisting of functions of the form (1.1) and satisfying the analytic criterion:

(1.8)
z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
∣∣∣∣ ≺ (1− α)

1 + Az

1 + Bz
+ α.

In other words, f(z) ∈ S(f, g;A, B;α, β) if and only if there exists function
w(z) satisfying w(0) = 0 and |w(z)| < 1 (z ∈ U) such that

(1.9)

∣∣∣∣∣∣∣∣

z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
∣∣∣∣− 1

B

[
z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
∣∣∣∣
]
− [B + (A−B)(1− α)]

∣∣∣∣∣∣∣∣
< 1.

We note that:
(i) S(f, g;A, B;α, 0) = S(f, g; A,B; α)

=





f(z) ∈ S :

∣∣∣∣∣∣∣∣

z(f ∗ g)′(z)
(f ∗ g)(z)

− 1

B
z(f ∗ g)′(z)
(f ∗ g)(z)

− [B + (A−B)(1− α)]

∣∣∣∣∣∣∣∣
< 1 (z ∈ U)





;

(ii) S(f, g; γ,−γ; α, 0) = S(f, g; γ, α)

=





f(z) ∈ S :

∣∣∣∣∣∣∣∣

z(f ∗ g)′(z)
(f ∗ g)(z)

− 1

z(f ∗ g)′(z)
(f ∗ g)(z)

+ 1− 2α

∣∣∣∣∣∣∣∣
< γ (0 < γ ≤ 1; z ∈ U)





.

Definition 1.4.([9]) For δ < 1 and |η| ≤ π

2
, we define the class Rη(δ) which

consists of functions g(z) of the form (1.2) and satisfying the analytic criterion

(1.10) < [
eiη (g′(z)− δ)

]
> 0 (z ∈ U).

Clearly, we have Rη(δ) ⊂ S (0 ≤ δ < 1). Furthermore, if the function g(z) of the
form (1.2) belongs to the class Rη(δ), then

(1.11) |gn| ≤ 2(1− δ) cos η

n
(n ≥ 2).

The class Rη(δ) was studied by Kanas and Srivastava [9].



238 M. K. Aouf, A. O. Mostafa and H. M. Zayed

Let 2F1(a, b; c; z) be the (Gaussian) hypergeometric function defined by

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n(1)n
zn (z ∈ U),

where c 6= 0,−1,−2, ... and

(λ)n =
{

1 if n = 0,
λ(λ + 1)(λ + 2)...(λ + n− 1) if n ∈ N = {1, 2, ...}.

We note that 2F1(a, b; c; 1) converges for <(c− a− b) > 0 and is related to Gamma
functions by

(1.12) 2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

We consider the functions

(1.13) e(a, b; c; z) = z 2F1(a, b; c; z) = z +
∞∑

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
zn,

and

(1.14) hµ(a, b; c; z) = (1− µ) (e(a, b; c; z)) + µz (e(a, b; c; z))′

= z +
∞∑

n=2

[1 + µ(n− 1)]
(a)n−1(b)n−1

(c)n−1(1)n−1
zn (µ ≥ 0).

The mapping properties of a function hµ(a, b; c; z) was studied by Shukla and Shukla
[18].

Using the Gaussian hypergeometric function 2F1(a, b; c; z) given by (1.13), Hohlov
[8] introduced a convolution operator Ia,b,c as

(1.15) [Ia,b,cf ] (z) = [z2F1(a, b; c; z)] ∗ f(z)

=
Γ(c)

Γ(b)Γ(c− b)

1∫

0

tb−1(1− t)c−b−1 f(tz)
t

dt ∗ z

(1− z)a
.

The operator Ia,b,c contains as a special case most of the known linear integral
and differential operators. For b = 1 in (1.15), the operator Ia,1,c reduces to
Carlson-Shaffer operator [3]. Also, it is a generalization of Bernardi operator [2]
and Ruscheweyh operator [16].
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Furthermore, Hohlov operator is a very specialized case of Dziok-Srivastava linear
operator which introduced and studied by Dziok and Srivastava (see [5] and [6])
and consequently, Srivastava-Wright operator (see [11] and [19]).

On the other hand, Aouf et al. [1] introduced and studied the operator

(1.16) [Ma,b,cf ] (z) = [z2F1(a, b; c; z)] ~ f(z)

=
Γ(c)

Γ(b)Γ(c− b)

1∫

0

tb−1(1− t)c−b−1 f(tz)
t

dt ~ z

(1− z)a
.

In this paper, we define the linear operator Ia,b,c(f ∗ g) : A → A by the convo-
lution as:
(1.17)

[Ia,b,c(f ∗ g)] (z) = [z2F1(a, b; c; z)] ∗ [(f ∗ g)(z)] = z +
∞∑

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
angnzn,

and the linear operator Ma,b,c(f ∗ g) : A → A by the integral convolution as:

(1.18) [Ma,b,c(f ∗ g)] (z) = [z2F1(a, b; c; z)] ~ [(f ∗ g)(z)]

= z +
∞∑

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1

angn

n
zn.

The operator Ia,b,c was introduced by Hohlov [8] when g(z) = z
1−z and the operator

Ma,b,c was introduced by Aouf et al. [1] when g(z) = z
1−z .

Also, we define the linear operator Lµ(f ∗ g) : A → A by the convolution as:

(1.19) [Lµ(f ∗ g)] (z) = hµ(a, b; c; z) ∗ [(f ∗ g)(z)]

= z +
∞∑

n=2

[1 + µ(n− 1)]
(a)n−1(b)n−1

(c)n−1(1)n−1
angnzn,

and the linear operator Nµ(f ∗ g) : A → A by the integral convolution as:

(1.20) [Nµ(f ∗ g)] (z) = hµ(a, b; c; z) ~ [(f ∗ g)(z)]

= z +
∞∑

n=2

[1 + µ(n− 1)]
(a)n−1(b)n−1

(c)n−1(1)n−1

angn

n
zn.

The operator Lµ was introduced by Kim and Shon [10] when g(z) = z
1−z and the

operator Nµ was introduced by Aouf et al. [1] when g(z) = z
1−z .
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The main objective in this paper is to introduce sufficient conditions for (Gaus-
sian) hypergeometric functions to be in various subclasses of analytic functions.
Also, we investigate several mapping properties involving these subclasses.

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that 0 ≤ α <
1, β ≥ 0, δ < 1, −1 ≤ B < A ≤ 1,−1 ≤ B < 0, |η| ≤ π

2 , C∗ = C\{0}, e(a, b; c; z) is
given by (1.13) and hµ(a, b; c; z) is given by (1.14).

To establish our results, we need the following lemma.

Lemma 2.1.([7, Theorem 1]) A sufficient condition for f(z) defined by (1.1) to be
in the class S(f, g; A,B;α, β) is

(2.1)
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)] |angn| ≤ (A−B)(1− α).

By using Lemma 2.1, we get the following results.

Theorem 2.1. Let a, b ∈ C∗ (|a| 6= 1; |b| 6= 1) and c be a real number such that
c > max {0, |a|+ |b| − 1}. If g(z) ∈ Rη(δ) and the inequality

(2.2)
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) [(1−B)(1 + β) + {(A−B)(1− α)− (1−B)(1 + β)} .

(c− |a| − |b|)
(|a| − 1)(|b| − 1)

]
≤ (A−B)(1− α)

[
1 +

1
2(1− δ) cos η

]

+
[(A−B)(1− α)− (1−B)(1 + β)] (c− 1)

(|a| − 1)(|b| − 1)
,

satisfied, then e(a, b; c; z) is in the class S(e, g; A,B; α, β).

Proof. Let g(z) of the form (1.2) belong to the class Rη(δ). According to Lemma
2.1, we need only to show that
(2.3)
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
gn

∣∣∣∣ ≤ (A−B)(1− α).

Taking into account the sufficient condition (1.11) and

(2.4) |(d)n| ≤ (|d|)n ,

then, the left hand side of (2.3) is less than or equal to

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

2(1− δ) cos η

n
= T0.
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Now

T0 = 2(1− δ)(1−B)(1 + β) cos η

[
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) − 1

]

+
2(1− δ) [(A−B)(1− α)− (1−B)(1 + β)] (c− 1) cos η

(|a| − 1)(|b| − 1)

.

[
Γ(c− 1)Γ(c− |a| − |b|+ 1)

Γ(c− |a|)Γ(c− |b|) − 1− (|a| − 1)(|b| − 1)
(c− 1)

]

= 2(1− δ) cos η
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) [[(A−B)(1− α)− (1−B)(1 + β)] .

(c− |a| − |b|)
(|a| − 1)(|b| − 1)

+ (1−B)(1 + β)
]
− 2(1− δ)(A−B)(1− α) cos η

−2(1− δ) [(A−B)(1− α)− (1−B)(1 + β)] (c− 1) cos η

(|a| − 1)(|b| − 1)
,

and this last expression is bounded above by (A − B)(1 − α) if (2.2) holds. This
completes the proof of Theorem 2.1. 2

Theorem 2.2. Let a, b ∈ C∗ (|a| 6= 1; |b| 6= 1) and c be a real number such that
c > |a|+ |b|+ 1. If g(z) ∈ Rη(δ) and the inequality

(2.5)
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) [{µ(A−B)(1− α) + (1− µ)(1−B)(1 + β)}

+µ(1−B)(1 + β)
|ab|

(c− |a| − |b| − 1)

+
(1− µ) [(A−B)(1− α)− (1−B)(1 + β)] (c− |a| − |b|)

(|a| − 1)(|b| − 1)

]

≤ (A−B)(1− α)
[
1 +

1
2(1− δ) cos η

]

+
(1− µ) [(A−B)(1− α)− (1−B)(1 + β)] (c− 1)

(|a| − 1)(|b| − 1)
,

holds, then hµ(a, b; c; z) is in the class S(hµ, g;A,B; α, β).

Proof. Let g(z) of the form (1.2) belong to the class Rη(δ). According to Lemma
2.1, it suffices to show that
(2.6)

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)] [1 + µ(n− 1)]
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
gn

∣∣∣∣

≤ (A−B)(1− α).

Using (2.4) and the sufficient condition (1.11), the left hand side of (2.6) is less than
or equal to

2(1− δ) cos η.
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∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)] [1 + µ(n− 1)]
(|a|)n−1(|b|)n−1

(c)n−1(1)n
= T1

and

T1 = 2(1− δ) cos η

[
µ(1−B)(1 + β)

∞∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−2

+ [µ(A−B)(1− α) + (1− µ)(1−B)(1 + β)]
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

+(1− µ) [(A−B)(1− α)− (1−B)(1 + β)]
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n

]

= 2(1− δ) cos η [{µ(A−B)(1− α) + (1− µ)(1−B)(1 + β)}(
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) − 1

)
+ µ(1−B)(1 + β)

|ab|
c

Γ(c + 1)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|)

+
(1− µ) [(A−B)(1− α)− (1−B)(1 + β)] (c− 1)

(|a| − 1)(|b| − 1)

+
(

Γ(c− 1)Γ(c− |a| − |b|+ 1)
Γ(c− |a|)Γ(c− |b|) − 1− (|a| − 1)(|b| − 1)

(c− 1)

)]

= 2(1− δ) cos η
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) [{µ(A−B)(1− α) + (1− µ)(1−B)(1 + β)}

+
µ(1−B)(1 + β)(|ab|)

(c− |a| − |b| − 1)

+
(1− µ) [(A−B)(1− α)− (1−B)(1 + β)] (c− |a| − |b|)

(|a| − 1)(|b| − 1)

]

− (1− µ) [(A−B)(1− α)− (1−B)(1 + β)] (c− 1)
(|a| − 1)(|b| − 1)

− (A−B)(1− α).

But this last expression is bounded above by (A − B)(1 − α) if (2.5) holds. Thus
the proof of Theorem 2.2 is completed. 2

Theorem 2.3. Let a, b ∈ C∗ and c be a real number such that c > |a|+ |b|+ 2. If
the following inequality

(2.7)
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
(A−B)(1− α) +

(1−B)(1 + β) (|a|)2 (|b|)2
(c− |a| − |b| − 2)2

+
[(A−B)(1− α) + 2(1−B)(1 + β)] (|ab|)

(c− |a| − |b| − 1)

]
≤ 2(A−B)(1− α),

is true, then [Ia,b,c(f ∗ g)] (z) maps (f ∗ g) ∈ S (or S∗) to S(f, g; A,B;α, β).
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Proof. We need only to prove that
(2.8)
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
angn

∣∣∣∣ ≤ (A−B)(1−α).

Using (2.4) and the fact that |angn| ≤ n for (f ∗ g) ∈ S (or S∗), the left hand side
of (2.8) is less than or equal to

∞∑
n=2

n [(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
= T2.

and

T2 = (1−B)(1 + β)
(|a|)2 (|b|)2

(c)2
Γ(c + 2)Γ(c− |a| − |b| − 2)

Γ(c− |a|)Γ(c− |b|)
+ [(A−B)(1− α) + 2(1−B)(1 + β)]

|ab|
c

Γ(c + 1)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|)

+(A−B)(1− α)
[
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) − 1

]

=
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
(A−B)(1− α) +

(1−B)(1 + β) (|a|)2 (|b|)2
(c− |a| − |b| − 2)2

+
[(A−B)(1− α) + 2(1−B)(1 + β)] (|ab|)

(c− |a| − |b| − 1)

]
− (A−B)(1− α).

Thus, from (2.7), we obtain the required result. 2

Theorem 2.4. Let a, b ∈ C∗ and c be a real number such that c > |a|+ |b|+ 1. If
the following inequality

(2.9)
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
(A−B)(1− α) +

(1−B)(1 + β)(|ab|)
(c− |a| − |b| − 1)

]

≤ 2(A−B)(1− α),

satisfied, then (i) [Ia,b,c(f ∗ g)] (z) maps (f ∗ g) ∈ K to S(f, g;A, B; α, β),
(ii) [Ma,b,c(f ∗ g)] (z) maps (f ∗ g) ∈ S (or S∗) to S(f, g; A,B;α, β).

Proof. (i) It suffices to prove that
(2.10)
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
angn

∣∣∣∣ ≤ (A−B)(1−α).

The left hand side of (2.10), by (2.4) and the fact that |angn| ≤ 1 for (f ∗ g) ∈ K,
is less than or equal to

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
= T3.
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Now

T3 = (1−B)(1 + β)
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−2
+ (A−B)(1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

= (1−B)(1 + β)
|ab|
c

Γ(c + 1)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|)

+(A−B)(1− α)
[
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) − 1

]

=
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
(A−B)(1− α) +

(1−B)(1 + β)(|ab|)
(c− |a| − |b| − 1)

]

−(A−B)(1− α).

But this last expression is bounded above by (A−B)(1−α) if (2.9) holds. The rest
of the proof of (ii) is the same as in the proof of (i), so, we omit it. This ends the
proof of Theorem 2.4. 2

Theorem 2.5. Let a, b ∈ C∗ (|a| 6= 1, |b| 6= 1) and c be a real number such that
c > max {0, |a|+ |b| − 1}. If the following inequality

(2.11)
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
(1−B)(1 + β) +

[(A−B)(1− α)− (1−B)(1 + β)] (c− |a| − |b|)
(|a| − 1)(|b| − 1)

]

≤ 2(A−B)(1− α) +
[(A−B)(1− α)− (1−B)(1 + β)] (c− 1)

(|a| − 1)(|b| − 1)
,

satisfied, then [Ma,b,c(f ∗ g)] (z) maps (f ∗ g) ∈ K to S(f, g;A, B; α, β).

Proof. It is enough to show that
(2.12)
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1

angn

n

∣∣∣∣ ≤ (A−B)(1−α).

The left hand side of (2.12) is less than or equal to

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
(|a|)n−1(|b|)n−1

(c)n−1(1)n
= T4.
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and

T4 = (1−B)(1 + β)
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

+ [(A−B)(1− α)− (1−B)(1 + β)]
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n

= (1−B)(1 + β)
[
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) − 1

]

+ [(A−B)(1− α)− (1−B)(1 + β)]

· (c− 1)
(|a| − 1)(|b| − 1)

Γ(c− 1)Γ(c− |a| − |b|+ 1)
Γ(c− |a|)Γ(c− |b|)

− [(A−B)(1− α)− (1−B)(1 + β)]
(

1 +
(c− 1)

(|a| − 1)(|b| − 1)

)

=
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) [(1−B)(1 + β) + {(A−B)(1− α)− (1−B)(1 + β)} .

.
(c− |a| − |b|)

(|a| − 1)(|b| − 1)

]
− [(A−B)(1− α)− (1−B)(1 + β)] (c− 1)

(|a| − 1)(|b| − 1)
−(A−B)(1− α).

The proof now follows by (2.11). 2

Theorem 2.6. Let a, b ∈ C∗ and c be a real number such that c > |a|+ |b|+ 3. If
the following inequality

(2.13)
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
[(1+2µ)(A−B)(1−α)+2(1+µ)(1−B)(1+β)](|ab|)

(c−| a|−|b|−1)

+ [µ(A−B)(1−α)+(1+4µ)(1−B)(1+β)](|a|)2(|b|)2
(c−|a|−|b|−2)2

+µ(1−B)(1+β)(|a|)3(|b|)3
(c−|a|−|b|−3)3

+ (A−B)(1− α)
]
≤ 2(A−B)(1− α),

satisfied, then [Lµ(f ∗ g)] (z) maps (f ∗ g) ∈ S (or S∗) to S(f, g; A,B;α, β).

Proof. It is enough to prove that
(2.14)
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)] [1 + µ(n− 1)]
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
angn

∣∣∣∣

≤ (A−B)(1− α).

The left hand side of (2.14) is less than or equal to

∞∑
n=2

n [(1−B)(1 + β)(n− 1) + (A−B)(1− α)] [1 + µ(n− 1)]
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
= T5.
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and

T5 = [µ(A−B)(1− α) + (1 + 4µ)(1−B)(1 + β)]
∞∑

n=3

(|a|)n−1(|b|)n−1
(c)n−1(1)n−3

+ [(1 + 2µ)(A−B)(1− α) + 2(1 + µ)(1−B)(1 + β)]
∞∑

n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−2

+µ(1−B)(1 + β)
∞∑

n=4

(|a|)n−1(|b|)n−1
(c)n−1(1)n−4

+ (A−B)(1− α)
∞∑

n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

= [µ(A−B)(1− α) + (1 + 4µ)(1−B)(1 + β)]

· (|a|)2 (|b|)2
(c)2

Γ(c + 2)Γ(c− |a| − |b| − 2)
Γ(c− |a|)Γ(c− |b|)

+ [(1 + 2µ)(A−B)(1− α) + 2(1 + µ)(1−B)(1 + β)]

· |ab|
c

Γ(c + 1)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|)

+µ(1−B)(1 + β)
(|a|)3 (|b|)3

(c)3
Γ(c + 3)Γ(c− |a| − |b| − 3)

Γ(c− |a|)Γ(c− |b|)
+(A−B)(1− α)

[
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) − 1

]

=
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
[(1 + 2µ)(A−B)(1− α) + 2(1 + µ)(1−B)(1 + β)] (|ab|)

(c− |a| − |b| − 1)

+
[µ(A−B)(1− α) + (1 + 4µ)(1−B)(1 + β)] (|a|)2 (|b|)2

(c− |a| − |b| − 2)2

+
µ(1−B)(1 + β) (|a|)3 (|b|)3

(c− |a| − |b| − 3)3
+ (A−B)(1− α)

]
− (A−B)(1− α).

It is easy to see that this last expression is bounded above by (A − B)(1 − α) if
(2.13) holds. 2

Theorem 2.7. Let a, b ∈ C∗ and c be a real number such that c > |a|+ |b|+ 2. If
the following inequality

(2.15)
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
[(1 + µ)(1−B)(1 + β) + µ(A−B)(1− α)] (|ab|)

(c− | a| − |b| − 1)

+
µ(1−B)(1 + β) (|a|)2 (|b|)2

(c− |a| − |b| − 2)2
+ (A−B)(1− α)

]

≤ 2(A−B)(1− α),

satisfied, then (i) [Lµ(f ∗ g)] (z) maps (f ∗ g) ∈ K to S(f, g; A,B; α, β),
(ii) [Nµ(f ∗ g)] (z) maps (f ∗ g) ∈ S (or S∗) to S(f, g; A,B; α, β).

Proof. It suffices for (i) and (ii) to show that
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)] [1 + µ(n− 1)]
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
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≤ (A−B)(1− α).

and

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)] [1 + µ(n− 1)]
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

= [(1 + µ)(1−B)(1 + β) + µ(A−B)(1− α)]
|ab|
c

Γ(c + 1)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|)

+µ(1−B)(1 + β)
(|a|)2 (|b|)2

(c)2
Γ(c + 2)Γ(c− |a| − |b| − 2)

Γ(c− |a|)Γ(c− |b|)
+(A−B)(1− α)

[
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) − 1

]

=
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

[
[(1 + µ)(1−B)(1 + β) + µ(A−B)(1− α)] (|ab|)

(c− |a| − |b| − 1)

+
µ(1−B)(1 + β) (|a|)2 (|b|)2

(c− |a| − |b| − 2)2
+ (A−B)(1− α)

]
− (A−B)(1− α).

Now, this last expression is bounded above by (A−B)(1− α) if (2.15) holds. 2

Using similar arguments to those in the proof of the above theorems, we obtain the
following theorem.

Theorem 2.8. Let a, b ∈ C∗ (|a| 6= 1; |b| 6= 1) and c be a real number such that
c > max {0, |a|+ |b| − 1}. If the following inequality

(2.16)
Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|) [{µ(A−B)(1− α) + (1− µ)(1−B)(1 + β)}

+µ(1−B)(1 + β)
|ab|

(c− |a| − |b| − 1)

+
(1− µ) [(A−B)(1− α)− (1−B)(1 + β)] (c− |a| − |b|)

(|a| − 1)(|b| − 1)

]

≤ 2(A−B)(1− α) +
(1− µ) [(A−B)(1− α)− (1−B)(1 + β)] (c− 1)

(|a| − 1)(|b| − 1)
,

satisfied, then [Nµ(f ∗ g)] (z) maps (f ∗ g) ∈ K to S(f, g; A,B;α, β).

Remark. By specializing A,B and β in the above theorems, we will obtain new
results for the classes S(f, g;A,B; α) and S(f, g; γ, α) mentioned in the introduction.
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