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COSET OF A HYPERCOMPLEX NUMBER SYSTEM IN

CLIFFORD ANALYSIS

Ji Eun Kim and Kwang Ho Shon

Abstract. We give certain properties of elements in a coset group with
hypercomplex numbers and research a monogenic function and a Clifford
regular function with values in a coset group by defining differential op-
erators. We give properties of those functions and a power of elements in
a coset group with hypercomplex numbers.

1. Introduction

Many kinds of quaternion, specially, split quaternions and dual quaternions,
etc., have applications in physics and computer systems. There are conven-
tional and mathematical constructions of quaternions by multiplication rules
of each elements. Leo [10] formulated special relativity by a quaternionic al-
gebra on reals and showed that a complexified quaternionic version of special
relativity is not a necessity. Hasebe [3] constructed quantum Hall effect on
split quaternions and analyzed that a wave function and membrane-like excita-
tions are derived explicitly. Brody and Graefe [1] introduced quaternionic and
coquaternionic (split signature analogue of quaternions) extensions of Hamil-
tonian mechanics and offered complexified classical and quantum mechanics.
Hucks [4] introduced basic properties and definitions for the hyperbolic com-
plex numbers, and applied the Dirac equation in 4 dimensions to special rel-
ativistic physics. Sobczyk [12] explored an underlying geometric framework
in which matrix multiplication arises from the product of numbers in a geo-
metric (Clifford) algebra. Jaglom [5] generated the mathematical operations
and representations between complex numbers and geometry. We [6, 7, 8, 9]
have researched corresponding Cauchy-Riemann systems and properties of a
regularity of functions with values in special quaternions on Clifford analysis
and gave a regular function with values in dual split quaternions and relations
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between a corresponding Cauchy-Riemann system and a regularity of functions
with values in dual split quaternions.

In the conventional mathematical construction of complex and multicom-
plex numbers, multiplication rules are suggested instead of being derived from
a general principle. Petrache [11] proposed a systematic approach based on the
concept of a coset product from the group theory. He showed that extensions
of real numbers in two or more dimensions follow from the closure property
of finite coset groups with the utility of multidimensional number systems ex-
pressed by elements of small group symmetries.

In this paper, we give the form of elements in a coset group with special
unit matrix bases and the multiplication of those elements. Also, we consider
certain properties of elements in a coset group with hypercomplex numbers
and then investigate a monogenic function and a Clifford regular function with
values in a coset group by defining differential operators. We give properties of
those functions and a power of elements in a coset group with hypercomplex
numbers.

2. Preliminaries

Throughout this paper, let R, C, and N be the sets of real and complex
numbers, and positive integers, respectively, and N0 := N ∪ {0}. Referring
Petrache [11], we consider the coset group G = {R, g1R, g2R, g3R}, where gm
is an element of the set outside of R but compatible with operations in R and
gm (m = 1, 2, 3). Then we obtain the following numbers by generating a set
within cosets:

A = {ζ = p+ gq | p, q ∈ C},

where g is an element of the set outside of C for which addition and multipli-
cation rules follow from the properties of g: For any ζ, η ∈ A,

ζ + η = (p1 + p2) + g(q1 + q2)

and

ζη = (p1p2 + αq1q2) + g(p1q2 + p2q1),

where α = g2 is a complex number. From the above multiplication rule, the
product ζη can be written in a matrix form:

(

p1p2 + αq1q2 p1q2 + p2q1
)

=
(

p1 q1
)

(

p2 q2
αq2 p2

)

,

which gives the following matrix form:

ζ =

(

p q

αq p

)

(p, q ∈ C).
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Since complex numbers p and q are also obtained by the above process, we
obtain

ζ =









x0 x1 x2 x3

αx1 x0 αx3 x2

αx2 αx3 x0 x1

α2x3 αx2 αx1 x0









= x01+ x1I + x2J + x3K,

where 1 is the unit matrix,

I =









0 1 0 0
α 0 0 0
0 0 0 1
0 0 α 0









, J =









0 0 1 0
0 0 0 1
α 0 0 0
0 α 0 0









, K =









0 0 0 1
0 0 α 0
0 α 0 0
α2 0 0 0









.

We consider properties of 1, I, J and K. By the multiplication of matrices, we
obtain

I2 = J2 = α1, K2 = α2 1,

IJ = JI = K, JK = KJ = αI, KI = IK = αJ.

If α = −1 + i0, where i =
√
−1 is the imaginary unit in C, then

I2 = J2 = −1, K2 = 1,

IJ = JI = K, JK = KJ = −I, KI = IK = −J.

Let C be a set of ζ with 1, I, J and K as follows:

C = {z = z1 + z2J | z1 = x0 + x1I, z2 = x2 + x3I, xr ∈ R (r = 0, 1, 2, 3)}
and the elements of C be said to be pseudo split quaternions.

We give the commutative multiplication of elements of C: For any z, w ∈ C,
zw = (z1w1 − z2w2) + (z1w2 + z2w1)J

= (x0y0 − x1y1 − x2y2 + x3y3) + (x0y1 + x1y0 − x2y3 − x3y2)I

+ (x0y2 − x1y3 + x2y0 − x3y1)J + (x0y3 + x1y2 + x2y1 + x3y0)K.

When z1 is a scalar multiplication of z2, we have the conjugate number z =
z1 − z2J , the norm of z is |z|2 = zz =

∑3
r=0 x

2
r and the inverse number of z is

z−1 = z
|z|2 .

Also, when z1 satisfies the equation z1 = Kz2I, where K is a scalar number,
we have the conjugate number z∗ = z1+z2J , the modulus of z is N(z) = zz∗ =

x2
0 + x2

1 − x2
2 − x2

3 and the inverse number of z is z−1 = z∗

N(z) .

Let Ω be an open set in C2. We give a function f : C2 → C such that

f(z) = f(z1, z2) = f1(z1, z2) + f2(z1, z2)J,

where f1 = u0 + u1I and f2 = u2 + u3I with ur (r = 0, 1, 2, 3) are real valued
functions. We give differential operators as follows:

D :=
1

2

( ∂

∂x0
− I

∂

∂x1
− J

∂

∂x2
+K

∂

∂x3

)

=
∂

∂z1
− J

∂

∂z2
,
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D =
1

2

( ∂

∂x0
+ I

∂

∂x1
+ J

∂

∂x2
+K

∂

∂x3

)

=
∂

∂z1
+ J

∂

∂z2
.

When ∂f
∂z1

is a scalar multiplication of ∂f
∂z2

, there is a Laplacian operator such
that

DDf = DDf =
∂2f

∂z1∂z1
+

∂2f

∂z2∂z2
=

1

4

3
∑

r=0

∂f

∂xr

.

Also, we have

D∗ =
1

2

( ∂

∂x0
+ I

∂

∂x1
− J

∂

∂x2
−K

∂

∂x3

)

=
∂

∂z1
− J

∂

∂z2
.

When ∂f
∂z1

satisfies the equation ∂f
∂z1

= KI ∂f
∂z2

, where K is a scalar number,

there is a Coulomb operator [2] such that

DD∗f = D∗Df =
∂2f

∂z1∂z1
− ∂2f

∂z2∂z2
=

1

4

(∂2f

∂x2
0

+
∂2f

∂x2
1

− ∂2f

∂x2
2

− ∂2f

∂x2
3

)

.

Remark 2.1. By the definition of differential operators, we have

Df =
(∂f1

∂z1
− ∂f2

∂z2

)

+
(∂f2

∂z1
+

∂f1

∂z2

)

J

and

D∗f =
(∂f1

∂z1
+

∂f2

∂z2

)

+
(∂f2

∂z1
− ∂f1

∂z2

)

J.

3. Properties of functions with values in C

Definition. Let Ω be an open set in C2. A function f(z) = f1(z) + f2(z)J is
said to be L(R)-monogenic in Ω if the following two conditions are satisfied:

(i) f1(z) and f2(z) are continuously differential functions on Ω, and
(ii) Df(z) = 0 (resp. f(z)D = 0) on Ω.

Definition. Let Ω be an open set in C2. A function f(z) = f1(z) + f2(z)J is
said to be L(R)-Clifford regular in Ω if the following two conditions are satisfied:

(i) f1(z) and f2(z) are continuously differential functions on Ω, and
(ii) D∗f(z) = 0 (resp. f(z)D∗ = 0) on Ω.

Since the equation Df = 0 (resp. D∗f = 0) is equivalent to the equation
fD = 0 (resp. fD∗ = 0), we don’t need to distinguish between left and right
monogenic (resp. Clifford regular).

Remark 3.1. The equation Df(z) = 0 is equivalent to the following equations:

(3.1)
∂f1

∂z1
=

∂f2

∂z2
and

∂f2

∂z1
= −∂f1

∂z2
.

Also, the equation D∗f(z) = 0 is equivalent to the following equations:

(3.2)
∂f1

∂z1
= −∂f2

∂z2
and

∂f2

∂z1
=

∂f1

∂z2
.
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The Equations (3.1) and (3.2) are the analogue of the Cauchy-Riemann
systems in C.
Remark 3.2. Let Ω be an open set in C2. If a function f(z) = f1(z) + f2(z)J
is monogenic in Ω, then it satisfies

D∗f = 2
∂f

∂z1
= −2J

∂f

∂z2
.

Also, if a function f(z) = f1(z)+f2(z)J is Clifford regular in Ω, then it satisfies

Df = 2
∂f

∂z1
= 2J

∂f

∂z2
.

Proposition 3.3. Let Ω be an open set in C2. For n ∈ N0, a function

f(z) = zn = (z1 + z2J)
n = f1 + f2J,

where

f1 =

n
∑

k=0
k:even

(−1)
k

2

(

n

k

)

zn−k
1 zk2 and f2 =

n
∑

k=1
k:odd

(−1)
k−1

2

(

n

k

)

zn−k
1 zk2 ,

is monogenic and Clifford regular in Ω.

Proof. By the definition of differential operators, we have

∂

∂zt
zmp = 0,

where m ∈ N0 and t, p = 1, 2. Hence, Dzn = 0 and D∗zn = 0. Therefore, we
obtain zn is monogenic and Clifford regular in Ω. �

Proposition 3.4. Let Ω be an open set in C2. A function f(z) = z−1 (z 6= 0)
is monogenic and Clifford regular in Ω.

Proof. Since a function f(z) = z−1 is defined by one of two cases as follows:
(i) z1 = Kz2, where K is scalar.
(ii) z1 = Kz2I, where K is scalar.
If z satisfies the case (i), then

Dz−1 = D
( z

zz

)

=
( ∂

∂z1
+ J

∂

∂z2

)( z1 − z2J

z1z1 + z2z2

)

= 0.

Also, if z satisfies the case (ii), then

D∗z−1 = D∗
( z∗

zz∗

)

=
( ∂

∂z1
− J

∂

∂z2

)( z1 + z2J

z1z1 − z2z2

)

= 0.

Therefore, we obtain the result. Furthermore, we have

D
( z∗

zz∗

)

= 0 and D∗
( z

zz

)

= 0.

Therefore, a function of the inverse form is monogenic (resp. Clifford regular)
in Ω, regardless of calculating operators. �
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Theorem 3.5. Let Ω be an open set in C2 and a function f be monogenic in

Ω. Then we have

Df =
∂f

∂x0
+

∂f

∂x3
K = − ∂f

∂x1
I − ∂f

∂x2
J.

Proof. From Remark 1 and the system (3.1), we have

Df =
(∂f1

∂z1
+

∂f2

∂z2

)

+
(∂f2

∂z1
− ∂f1

∂z2

)

J

=
(∂f1

∂z1
− ∂f2

∂z2

)

+
(∂f2

∂z1
+

∂f1

∂z2

)

J

+
∂

∂x1
(u1 − u0I + u3J − u2K) +

∂

∂x3
(u2 + u3I − u0J − u1K)

= − ∂f

∂x1
I − ∂f

∂x2
J ;

or

Df = −
(∂f1

∂z1
− ∂f2

∂z2

)

−
(∂f1

∂z2
+

∂f2

∂z1

)

J

+
∂

∂x0
(u0 + u1I + u2J + u3K) +

∂

∂x3
(u3 − u2I − u1J + u0K)

=
∂f

∂x0
+

∂f

∂x3
K.

Therefore, we obtain the result. �

Corollary 3.6. Let Ω be an open set in C
2 and a function f be Clifford regular

in Ω. Then we have

Df =
∂f

∂x0
− ∂f

∂x2
J = − ∂f

∂x1
I +

∂f

∂x3
K.

Proof. Following the process of proof of Theorem 3.5, we also obtain the result.
�

Proposition 3.7. Let Ω be an open set in C
2 and let f and g be monogenic

(resp. Clifford regular) in Ω. Then the following properties are satisfied:
(i) fα and αf are monogenic (resp. Clifford regular) in Ω, where α is a

constant in C.
(ii) fg is monogenic (resp. Clifford regular) in Ω.

Proof. From the property of multiplication in C and the definition of monogenic
(resp. Clifford regular) in Ω, the results are obtained. �

We let

ω := dz1 ∧ dz2 ∧ dz2 + Jdz1 ∧ dz1 ∧ dz2.
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Theorem 3.8. Let Ω be a domain in C2 and U be any domain in Ω with a

smooth boundary bU such that U ⊂ Ω. If a function f is monogenic in Ω, then
∫

bU

ωf = 0,

where ωf is the product on C of the form ω on the function f(z).

Proof. Since the function f = f1 + f2J has the equation

ωf = f1dz1∧dz2∧dz2−f2dz1∧dz1∧dz2+J(f1dz1∧dz1∧dz2+f2dz1∧dz2∧dz2),
we have

d(ωf) =
∂f1

∂z1
dz1 ∧ dz1 ∧ dz2 ∧ dz2 + J

∂f2

∂z1
dz1 ∧ dz1 ∧ dz2 ∧ dz2

− ∂f2

∂z2
dz2 ∧ dz1 ∧ dz1 ∧ dz2 + J

∂f1

∂z2
dz2 ∧ dz1 ∧ dz1 ∧ dz2

=
(∂f1

∂z1
− ∂f2

∂z2

)

dV + J
(∂f2

∂z1
+

∂f1

∂z2

)

dV,

where dV = dz1 ∧ dz2 ∧ dz1 ∧ dz2. Since f is monogenic in Ω, f satisfies the
equation (3.1). Hence, we have d(ωf) = 0. Therefore, by Stokes’ theorem, we
obtain the result. �

Corollary 3.9. Let Ω be a domain in C2 and U be any domain in Ω with a

smooth boundary bU such that U ⊂ Ω. Suppose

ω = dz1 ∧ dz2 ∧ dz2 − Jdz1 ∧ dz1 ∧ dz2

and a function f is Clifford regular in Ω. Then
∫

bU

ωf = 0,

where ωf is the product on C of the form ω on the function f(z).

Proof. Using the process of proof of Theorem 3.8, we have

d(ωf) =
(∂f1

∂z1
+

∂f2

∂z2

)

dV + J
(∂f2

∂z1
− ∂f1

∂z2

)

dV,

where dV = dz1 ∧ dz2 ∧ dz1 ∧ dz2. Since f is Clifford regular in Ω, f satisfies
the equation (3.2). Therefore, we have d(ωf) = 0 and by Stokes’ theorem, we
obtain the result. �

Example 3.10. Let Ω be a domain in C2 and U be any domain in Ω with a
smooth boundary bU such that U ⊂ Ω and let ω = dz1 ∧ dz2 ∧ dz2 + Jdz1 ∧
dz1 ∧ dz2. Suppose f(z) = zn (n ∈ N0) be monogenic in Ω. Then

∫

bU

ωf =

∫

U

d(ωf)

=

∫

U

(∂f1

∂z1
− ∂f2

∂z2

)

dV +

∫

U

J
(∂f2

∂z1
+

∂f1

∂z2

)

dV = 0,



1728 JI EUN KIM AND KWANG HO SHON

where ωf is the product on C of the form ω on the function f(z) and dV =
dz1 ∧ dz2 ∧ dz1 ∧ dz2.

Example 3.11. Let Ω be a domain in C2 and U be any domain in Ω with a
smooth boundary bU such that U ⊂ Ω and let ω = dz1 ∧ dz2 ∧ dz2 + Jdz1 ∧
dz1 ∧ dz2. If f(z) = zn (n ∈ N0) is Clifford regular in Ω, then

∫

bU

ωf =

∫

U

d(ωf)

=

∫

U

(∂f1

∂z1
+

∂f2

∂z2

)

dV +

∫

U

J
(∂f2

∂z1
− ∂f1

∂z2

)

dV = 0,

where ωf is the product on C of the form ω on the function f(z) and dV =
dz1 ∧ dz2 ∧ dz1 ∧ dz2.
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