The service, 'Hot Search Keywords', provides a list of the most hot search terms of different web services such as Naver or Daum. The service, bases the changes in rank of a specific search keyword on changes in its users' interest. This paper introduces a temporal modelling framework for predicting the rank change of hot search keywords using past rank data and machine learning. Past rank data shows that more than 70% of hot search keywords tend to disappear and reappear later. The authors processed missing rank value, using deletion, dummy variables, mean substitution, and expectation maximization. It is however crucial to calculate the optimal window size of the past rank data. We proposed an optimal window size selection approach based on the minimum amount of time a topic within the same or a differing context disappeared. The experiments were conducted with four different machine-learning techniques using the Naver, Daum, and Nate 'Hot Search Keywords' datasets, which were collected for 2 years.
Journal of Korean Library and Information Science Society
/
v.47
no.3
/
pp.95-114
/
2016
The purpose of this preliminary study is to collect specific examples of book reports and understand semantic characteristics of them through semantic network. The analysis was conducted with 23 book reports which classified by three groups. The keywords were selected from the of book reports. Five types of keyword network were composed based on co-occurrence relations with keywords. The result of this study is following these. First, each keyword network of book reports of groups and individuals is shown to have different structural characteristics. Second, each network has different high centrality keywords according to the result analysis of 3 types of centrality(degree centrality, closeness centrality, betweenness centrality). These characteristic means that keyword network analysis is useful in recognizing the characteristics of not only groups' and but also individual's book reports.
In various research fields, it is important to identify the trends and meaningful patterns in large volumes of text data. We examined the research trends and patterns in global journal articles related to aviation and airlines from 1997 to 2016 using keyword network analysis. Keyword network models were constructed, and centrality (degree and betweenness) analysis was performed using 25,959 articles from the Scopus database. The results suggested that the recent research trends in aviation and airlines could be quantitatively described through keyword network analysis. The engineering and social science fields were the most relevant fields with keywords related to aviation and airlines. In addition, it was shown that betweenness centrality increased with the degree centrality of keywords. The results of this study could be applied to establish policies and suggest further research topics in the field of aviation and airlines based on empirical data.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.146-147
/
2017
Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Internet of things" keyword, one month as of october 8, 2017. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Internet of things" has been found to be technology (995). This study suggests theoretical implications based on the results.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.2
/
pp.721-732
/
2021
This study analyzed keywords for agricultural R&D using the textmining method to examine the trend of agricultural R&D. Data used for the analysis included R&D project information provided by NTIS, and the research and development step by year from 2003 to 2018 were classified and applied. The TF-IDF approach was used as the analysis method, and ranking was derived based on score. Furthermore, we analyzed by grouping for similar keywords. The main analysis results are as follows. First, agricultural R&D trends are changing according to the introduction of new technologies and changes in the external environment. Second, keyword changes appeared with a time lag in the R&D step. The main keywords are changing in the order of basic research - applied research - development research. Third, the main keyword of agricultural R&D was 'rice.' However, the direction and purpose of the research were changing according to changes in the domestic and foreign agricultural environments.
Journal of the Korea Society of Computer and Information
/
v.26
no.8
/
pp.55-63
/
2021
Since social big data often includes new words or proper nouns, statistical morphological analysis methods have been widely used to process them properly which are based on the frequency of occurrence of each word. However, these methods do not properly recognize compound nouns, and thus have a problem in that the accuracy of keyword extraction is lowered. This paper presents a method to extract compound nouns in keyword analysis of social big data. The proposed method creates a candidate group of compound nouns by combining the words obtained through the morphological analysis step, and extracts compound nouns by examining their frequency of appearance in a given review. Two algorithms have been proposed according to the method of constructing the candidate group, and the performance of each algorithm is expressed and compared with formulas. The comparison result is verified through experiments on real data collected online, where the results also show that the proposed method is suitable for real-time processing.
Despite the fact that Internet users around the world watch YouTube every day, very few users accurately recognize the recommendation algorithm for search results, and Google and YouTube are not disclosing it. Researchers tried to explore the undisclosed algorithm of YouTube in a reverse engineering design method, find key factors, and check the logical structure in which media platform operators recommend keyword search results and arrange them on the screen. Therefore, researchers studied the basic content priority factors through several months of discussion and data collection, and tried to reverse engineer the influencing factors based on the recommendation results according to male and female gender among the collected keyword search results. Although researchers' design only analyzed some of the almost infinite level of data uploaded and viewed for more than hundreds of hours every hour, these exploratory attempts will study media platform algorithms in the future, understand the intentions of operators, and protect users. thought it could be done.
This research was conducted on 176 GVCs-related research papers listed in the Index of Korean Academic Writers. The analysis methodology used the keyword network analysis methodology of big data analysis. For the comprehensive analysis of research trends, the research trends through word frequency (TF), important topic (TF-IDF), and topical modeling were analyzed in 176 papers. In addition, the research period of GVCs was divided into the early stages of the first study (2003-2014), the second phase of the study (2015-2017), and the third phase of the study (2018-2020). According to the comprehensive analysis, the GVCs research was conducted with the keyword 'value added' as the center, focusing on the keywords of export (trade), Korea, business, influence, and production. Major research topics were 'supporting corporate cooperation and capacity building' and 'comparative advantage with added value of overseas direct investment'. According to the analysis of major period-specific research trends, GVCs were studied in the early stages of the first phase of the study with global value chain trends and corporate production strategies. In the second research propulsion period, research was done in terms of trade value added. In the recent third phase of the study, small and medium-sized enterprises actively participated in the global value chain and actively researched ways to support the government. Through this study, the importance of the global value chain has been confirmed quantitatively and qualitatively, and it is recognized as an important factor to be considered in the strategy of enhancing industrial competitiveness and entering overseas markets. In particular, small and medium-sized companies' participation in the global value chain and support measures are being presented as important research topics in the future.
Purpose - The purpose of this study was to investigate the perception of 'unmanned cafes' on the network through big data analysis, and to identify the latest trends in rapidly changing consumer perception. Based on this, I would like to suggest that it can be used as basic data for the revitalization of unmanned cafes and differentiated marketing strategies. Design/methodology/approach - This study collected documents containing unmanned cafe keywords for about three years, and the data collected using text mining techniques were analyzed using methods such as keyword frequency analysis, centrality analysis, and keyword network analysis. Findings - First, the top 10 words with a high frequency of appearance were identified in the order of unmanned cafes, unmanned cafes, start-up, operation, coffee, time, coffee machine, franchise, and robot cafes. Second, visualization of the semantic network confirmed that the key keyword "unmanned cafe" was at the center of the keyword cluster. Research implications or Originality - Using big data to collect and analyze keywords with high web visibility, we tried to identify new issues or trends in unmanned cafe recognition, which consists of keywords related to start-ups, mainly deals with topics related to start-ups when unmanned cafes are mentioned on the network.
Knowledge management can be defined as the valuable storing and creation of new knowledge, as well as the sharing of this knowledge to be applied in all areas of an organization's management activities (Turban et al., 2003). In a knowledge-based society where intangible intellectual assets are the source of competitive advantage rather than tangible assets, knowledge management activities are emphasized in both academia and industry. This study analyzes research on "knowledge management" keyword indexed in the Korean Citation Index (https://kci.go.kr), operated by the National Research Foundation of Korea (NRF), to identify related research trends in Korea and suggest future directions for knowledge management activities. The results show that knowledge management is being researched through the integration of various fields and theories, indicating the potential for expanding research topics and fostering interdisciplinary collaboration. Furthermore, the study of knowledge management often include the keyword 'innovation', emphasizing its significant role in organizational and technological innovations. The analysis of keywords by year also reveals that they reflect the major environmental changes of each period, demonstrating the increasing importance of knowledge management in the era of the Fourth Industrial Revolution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.