• Title/Summary/Keyword: Kernel method

Search Result 999, Processing Time 0.032 seconds

NEW INTERIOR POINT METHODS FOR SOLVING $P_*(\kappa)$ LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, You-Young;Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.189-202
    • /
    • 2009
  • In this paper we propose new primal-dual interior point algorithms for $P_*(\kappa)$ linear complementarity problems based on a new class of kernel functions which contains the kernel function in [8] as a special case. We show that the iteration bounds are $O((1+2\kappa)n^{\frac{9}{14}}\;log\;\frac{n{\mu}^0}{\epsilon}$) for large-update and $O((1+2\kappa)\sqrt{n}log\frac{n{\mu}^0}{\epsilon}$) for small-update methods, respectively. This iteration complexity for large-update methods improves the iteration complexity with a factor $n^{\frac{5}{14}}$ when compared with the method based on the classical logarithmic kernel function. For small-update, the iteration complexity is the best known bound for such methods.

  • PDF

Design and Implementation of the Linux Kernel Backdoor Intruder Tracing-Response System (리눅스 커널 백도어 침입자 추적대응시스템 설계 및 구현)

  • Jeon, Wan-Keun
    • Convergence Security Journal
    • /
    • v.5 no.2
    • /
    • pp.43-50
    • /
    • 2005
  • This paper is about the method that chases the Linux kernel backdoor intruder and copes with the kernel backdoor attack. We have a limit to trace the hacker with the current log analysing method because the hacker generally removes the log file and use the forge IP information. I propose the solution to solve the problem with the DeFor system. Through the restoration of the deleted log file, analysis of it and full HDD image, promptly quick response, it is possible to trace hacker spot and reduce hacking damage.

  • PDF

Semiparametric kernel logistic regression with longitudinal data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.385-392
    • /
    • 2012
  • Logistic regression is a well known binary classification method in the field of statistical learning. Mixed-effect regression models are widely used for the analysis of correlated data such as those found in longitudinal studies. We consider kernel extensions with semiparametric fixed effects and parametric random effects for the logistic regression. The estimation is performed through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of optimal hyperparameters, cross-validation techniques are employed. Numerical results are then presented to indicate the performance of the proposed procedure.

GMM Based Voice Conversion Using Kernel PCA (Kernel PCA를 이용한 GMM 기반의 음성변환)

  • Han, Joon-Hee;Bae, Jae-Hyun;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.167-180
    • /
    • 2008
  • This paper describes a novel spectral envelope conversion method based on Gaussian mixture model (GMM). The core of this paper is rearranging source feature vectors in input space to the transformed feature vectors in feature space for the better modeling of GMM of source and target features. The quality of statistical modeling is dependent on the distribution and the dimension of data. The proposed method transforms both of the distribution and dimension of data and gives us the chance to model the same data with different configuration. Because the converted feature vectors should be on the input space, only source feature vectors are rearranged in the feature space and target feature vectors remain unchanged for the joint pdf of source and target features using KPCA. The experimental result shows that the proposed method outperforms the conventional GMM-based conversion method in various training environment.

  • PDF

A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction

  • Yang, Li-qun;Liu, Yong-kuo;Peng, Min-jun;Li, Meng-kun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1436-1443
    • /
    • 2019
  • A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction and point-kernel method is proposed in this paper. The complex three-dimensional (3D) geometries are imported as a 3DS format file from 3dsMax software with material and radiometric attributes. Based on 3D stylized model reconstruction of solid mesh, the 3D-geometrical solids are automatically converted into stylized models. In point-kernel calculation, the stylized source models are divided into point kernels and the mean free paths (mfp) are calculated by the intersections between shield stylized models and tracing ray. Compared with MCNP, the proposed method can implement complex 3D geometries visually, and the dose rate calculation is accurate and fast.

Deconvolution of Detector Size Effect Using Monte Carlo Simulation (몬데카를로 시뮬레이션을 이용한 검출기의 크기효과 제거)

  • Park, Kwangyl;Yi, Byong-Yong;Young W. Vahc
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.100-104
    • /
    • 2004
  • The detector size effect due to the spatial response of detectors is a critical source of inaccuracy in clinical dosimetry that has been the subject of numerous studies. Conventionally, the detector response kernel contains all the information about the influence that the detector size has on the measured beam profile. Various analytical models for this kernel have been proposed and studied in theoretical and experimental works. Herein, a method to simply determine the detector response kernel using the Monte Carlo simulation and convolution theory has been proposed. Based on this numerical method, the detector response kernel for a Farmer type ion chamber embedded in a water phantom has been obtained. The obtained kernel shows characteristics of both the pre-existing parabolic model proposed by Sibata et al. and the Gaussian model used by Garcia-Vicente et al. From this kernel and deconvolution technique, the detector size effect can be removed from measurements for 6MV, 10${\times}$10 $\textrm{cm}^2$ and 0.5${\times}$10 $\textrm{cm}^2$photon beams. The deconvolved beam profiles are in good agreements with the measurements performed by the film and pin-point ion chamber, with the exception of in the tail legion.

  • PDF

Local Bandwidth Selection for Nonparametric Regression

  • Lee, Seong-Woo;Cha, Kyung-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.453-463
    • /
    • 1997
  • Nonparametric kernel regression has recently gained widespread acceptance as an attractive method for the nonparametric estimation of the mean function from noisy regression data. Also, the practical implementation of kernel method is enhanced by the availability of reliable rule for automatic selection of the bandwidth. In this article, we propose a method for automatic selection of the bandwidth that minimizes the asymptotic mean square error. Then, the estimated bandwidth by the proposed method is compared with the theoretical optimal bandwidth and a bandwidth by plug-in method. Simulation study is performed and shows satisfactory behavior of the proposed method.

  • PDF

Development of Radiation Dose Assessment Algorithm for Arbitrary Geometry Radiation Source Based on Point-kernel Method (Point-kernel 방법론 기반 임의 형태 방사선원에 대한 외부피폭 방사선량 평가 알고리즘 개발)

  • Ju Young Kim;Min Seong Kim;Ji Woo Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.275-282
    • /
    • 2023
  • Workers in nuclear power plants are likely to be exposed to radiation from various geometrical sources. In order to evaluate the exposure level, the point-kernel method can be utilized. In order to perform a dose assessment based on this method, the radiation source should be divided into point sources, and the number of divisions should be set by the evaluator. However, for the general public, there may be difficulties in selecting the appropriate number of divisions and performing an evaluation. Therefore, the purpose of this study is to develop an algorithm for dose assessment for arbitrary shaped sources based on the point-kernel method. For this purpose, the point-kernel method was analyzed and the main factors for the dose assessment were selected. Subsequently, based on the analyzed methodology, a dose assessment algorithm for arbitrary shaped sources was developed. Lastly, the developed algorithm was verified using Microshield. The dose assessment procedure of the developed algorithm consisted of 1) boundary space setting step, 2) source grid division step, 3) the set of point sources generation step, and 4) dose assessment step. In the boundary space setting step, the boundaries of the space occupied by the sources are set. In the grid division step, the boundary space is divided into several grids. In the set of point sources generation step, the coordinates of the point sources are set by considering the proportion of sources occupying each grid. Finally, in the dose assessment step, the results of the dose assessments for each point source are summed up to derive the dose rate. In order to verify the developed algorithm, the exposure scenario was established based on the standard exposure scenario presented by the American National Standards Institute. The results of the evaluation with the developed algorithm and Microshield were compare. The results of the evaluation with the developed algorithm showed a range of 1.99×10-1~9.74×10-1 μSv hr-1, depending on the distance and the error between the results of the developed algorithm and Microshield was about 0.48~6.93%. The error was attributed to the difference in the number of point sources and point source distribution between the developed algorithm and the Microshield. The results of this study can be utilized for external exposure radiation dose assessments based on the point-kernel method.

Failure Probability Calculation Method Using Kriging Metamodel-based Importance Sampling Method (크리깅 근사모델 기반의 중요도 추출법을 이용한 고장확률 계산 방안)

  • Lee, Seunggyu;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.381-389
    • /
    • 2017
  • The kernel density was determined based on sampling points obtained in a Markov chain simulation and was assumed to be an important sampling function. A Kriging metamodel was constructed in more detail in the vicinity of a limit state. The failure probability was calculated based on importance sampling, which was performed for the Kriging metamodel. A pre-existing method was modified to obtain more sampling points for a kernel density in the vicinity of a limit state. A stable numerical method was proposed to find a parameter of the kernel density. To assess the completeness of the Kriging metamodel, the possibility of changes in the calculated failure probability due to the uncertainty of the Kriging metamodel was calculated.

The Analysis of Memory Map for Improving the Execution Speed of Embedded Linux Kernel (임베디드 리눅스 커널의 실행속도 향상을 위한 메모리 맵 분석)

  • Lee, Doo-Wan;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.801-804
    • /
    • 2009
  • In this paper, the Linux kernel memory map was analyzed as the approach to Improving performance for Embedded Linux system. Since the Linux kernel memory map supporting a stability and various H/W platforms and in which it becomes to the general purpose system with optimization manages the role of being important in the booting time and the efficient system utilization of resources, the analysis of the kernel memory map is required for the performance improvement of the Embedded Linux system in which it is restrictive the resources. According to the analysis result, and of the Linux kernel memory, the booting speed of and improvement of the memory efficiency were confirmed. It is therefore considered that the proposed in this paper and kernel memory allocation method are suitable to the memory availability improvement of the Embedded Linux system.

  • PDF