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Abstract

Nonparametric kernel regression has recently gained widespread acceptance as an
attractive method for the nonparametric estimation of the mean function from noisy
regression data. Also, the practical implementation of kernel method is enhanced by
the availability of reliable rule for automatic selection of the bandwidth.

In this article, we propose a method for automatic selection of the bandwidth that
minimizes the asymptotic mean square error. Then, the estimated bandwidth by the
proposed method is compared with the theoretical optimal bandwidth and a bandwidth
by plug-in method. Simulation study is performed and shows satisfactory behavior of
the proposed method.

1. Introduction

Recently, the field of nonparametrics has expended its appeal with an array of new tools for
statistical analysis. Without making specific distributional assumptions, these new tools offer
sophisticated substitute to traditional parametric models for exploring large amounts of
scattered data. As one of those tools, nonparametric kernel regression has become a
conspicuous statistical research issue. Now, development in computation and the fast
computational facilities available to statisticians have had an important consequence upon
statistical study, and in particular the advance of nonparametric data analysis procedures. The
merits of this approach include brief in terms of interpretability and mathematical analysis.

As with any nonparametric regression procedure, an important choice to be made is the
amount of averaging performed to obtain the regression estimate. For a kernel-type estimator,
this is controlled by a parameter usually referred to as the bandwidth. When a single
bandwidth is used for the whole range of the data, it is generally called a global bandwidth
kernel estimator. Otherwise, if the estimated bandwidth depends on a point of estimation, the
estimator is called a local bandwidth kernel estimator. Bandwidths that are too small produce
estimates that are too wiggly, tending toward interpolation of the data, and bandwidths that

1) This research is partially supported by the Research Institute for Natural Sciences at Hanyang
University, 1997.

9) Assistant Professor, Department of Applied Statistics, Seo Kyeong University, Seoul 133-704, Korea
3) Assistant Professor, Department of Mathematics, Hanyang University, Seoul 133-791, Korea



454 Seung-Woo Lee, Kyung-Joon Cha

are too large smooth out features in the true mean function. A data-driven bandwidth selector
that estimates the correct amount of smoothing is very useful for the analyst.

The main purpose of this paper is to develop a local adaptive bandwidth selection method.
To show practical performance of the proposed method, we compare the developed method
with plug-in type bandwidth selection method which involves estimation of unknown
functional that appears in formulas for the asymptotically optimal bandwidth.

Let m(#), t <[0,1], be an unknown regression function with # continuous derivatives.
Observations ¥;, 7=1,2,**,# of m have been made, which are contaminated with error and
are of the form

yi=m(t)+e,.

The &, are independent and identically distributed, their distribution satisfy E(e)=0 and
E(e?)= ¢ { . The simplifying assumption that 0= t (£, {t,=1 are equally spaced in
[0,1] is made. The objective is to estimate m(#) formed observations.

A computationally simpler method of nonparametric curve fitting uses kernel estimates. Here
the class of kernel estimators of m(#) proposed by Priestley and Chao (1972) is adapted and
defined by

m(t,h) = n ,g h K( h )yx ’

where K is a kernel function and # is the bandwidth. The kernel function, K, is assumed
to be continuously differentiable and of order p in the sense that

1. 1 j
f_lz’K(z)dz = {0 j
k40 j

oy
=Y
M
[

?.

2. Local Bandwidth Selection

There are several local bandwidth selection methods studied in the literature. However,
recently, Brockmann, Gasser and Herrmann (1993) showed that theoretical and practical
advantages of local bandwidth can be obtained when the optimal bandwidth is estimated from
the data.

The proposed approach is based on a simple asymptotic relation between variance and bias®
which is introduced by Cha and Lee (1995). Schucany (1995) proposed a similar method to
find a local bandwidth via the bias and variance decomposition of the mean square error. In
fact, he used two term bias expansion and adopted polynomial regression model to estimate
bias itself instead of bias®, moreover he even used a higher order polynomial regression model
by multiplying two term bias expansion and its derivative to estimate approximately linear
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region of the true curve where its second derivative may vanish. Then, he solved the variance
and bias decomposition using Newton’s method to find the estimated bandwidth which clearly
does not guarantee the relation (3).

For the proposed method, the optimal is taken to be in the sense of minimizing the mean
square error(mse)

msel m(¢;h)] = var( h) + bias?( &), 1)

where var( h) = varl m(#;k)] and bias( A = E[ m(t;h)] - m(D.
Suppose that m(#) is p times continuously differentiable function on the unit interval.
Then, the expected value of m(#;4) at a fixed 1 is

Easml= [ KU~ dhm O ()4 -E @ 4.

t=1/h
+(=1 22y Ozt o(h?),

where m ?(#) is the jth derivative of m(f) and z= t;S. Hence, [—l,l]C[—t;;z—l,—}tT]

for sufficiently small 4, the above expectation becomes
1 2
ELatm]= [ KUm()— zhm O ()+ Ly @(g) .
?
+(=D "JZ’—Iﬁ)—m"”(t)]dznL o(h*)

= m(t)+ —(_7!1)1 htm P(P f_llz K(2)dz+ o(h?)

by assumptions of the kernel function of order p. Hence, when #mh—c0 as n—oo and hA—0,
the asymptotic bias of m(#;h), bias( ), is

1\
bias (= L= wm® () &, + ol 4%,
- ~
where k,= f_lz’K(z)dz and the asymptotic variance of m(¢;h), var( h), is
I 1
var(y=-2 [ K*(2)dz + ol 1)
for equally spaced ¢'s (see Gasser and Miiller, 1979, for details). Hence, by ignoring the

vanishipg terms, the asymptotically optimal bandwidth which minimizes the asymptotic mse
[ m(t;h)] is

1/(2p+1)
cQ ] , @)

oot = [ 26mCk,m (1) /1)’
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1
where Q= f_lK2(z)dz. Then, it can be easily shown that by substituting (2) into (1), we
obtain
var( k) =2pbias?( k), (3

that is, the optimal bandwidth which minimizes mse balances variance and 2pbias®. In other
words, the intersection of variance and 2pbias’ gives the optimal bandwidth.

For a fixed h, now let us express var( 4) and bias®( k) as

=A . 1 20 2\ ppl 2
var( k) = " + o nh) and bias®( A)= Bh“*+ o(h*) 4)

for constants A and B.

As is often the case, it is usual that we can consider the remainder term as error term.
Hence, (4) can be considered having the structure of regression models in power of 4. Thus,
for fixed h's, we may apply the least squares method to estimate A and B, and if we can

get A and B for A and B, the estimated adaptive local bandwidth becomes

i

_~ 1/(2p+1)
A } )

2mB
Now, let var( #) be modeled by, for fixed &;'s,

v=-S-tG, =12,k )
’

where {; are error terms. In order to estimate A, let us look at the var( A). It is easy to see

o SR,

n’h®

thus we need only to estimate o® to estimate variance. Hence, we can adopt v; as

~32
Y, S a0 t— b
vi= nzh’z- ;K( h; )

that the exact variance of m(¢t;h) is

for fixed A;'s.

Then, (6) yields the least squares estimator of A as

O
(BB

Similarly, let bias?(%) be modeled by, for fixed hj's,
b= Bh?+&;, i=1,2,.k (7

where &; are error terms. In order to estimate B, let us look at



Local Bandwidth Selection 457

t—t;
_l]; ngD(T)yn

where K (2) = K,(2) —K,4,(2) with pth and ( p+2)th order kernels. Here, we used Kx(2)

t—t;
since the expected value of 7111— gKD( 7 L)y, is

Bl L 3 Ko i)

= E{ ;lﬁ ng( =4 )yi— # ZKﬁZ(”‘t——ﬁﬁ )J’i]

= {ms +1——)— hom P(b)k, +—((—p—_l—_)ﬁh“2m OD(4) byt o))

{m(t)+%{)§)—,—hp+2 APk, +o(h"+2)}

. 1
where kyip= f_l z? +ZK,,H( z)dz. Thus, taking the difference of two asymptotic expressions

_1\?
and ignoring the vanishing terms leave the leading term (=0* Wm P(f) k,. Hence, we can

!
L Sk

for fixed h;'s. As we showed, the expected value of b, is

adopt b; as

)y,

_1\?
E(b) = 1—)—1,,1 Km (D,

by taking only leading term, thus

2
(E(b,)) = [1‘7,111 Km O(Dk,)

- {El_" m P(D ki,]zh,z-’
= Bk}
which need to be estimated. Also, from (7),
E(b?) = E(Bh? + &) = Bh?.

Thus, we can use (7) to find the least squares estimator of B and this yields
2 bZ tha
g; h4ﬂ

Hence, we can get the estimated local bandwidth, h,, defined by (5).
Therefore, with predetermined fixed values of h&’'s, both v; and b,-2 can be obtained. And
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then, given several estimated values of v; and b,-2 fitting the relations (6) and (7), estimates

A and B can be obtained. It should be noticed that the data-driven bandwidth ﬁ, satlisfies
(3), ie, balances variance and bias®.

Now, let us consider another way to estimate the unknown m?(#) in (2). One way to
estimate m?(9 is the plug-in method which was introduced by Gasser, Miiler and
Mammitzsch (1985) and Miiller (1985).

In problems of nonparametric curve estimation, the optimal amount of smoothing depends on
unknown characteristics of the curve, such as derivatives of the curve at the point of
estimation. One way of estimating those characteristics is to construct one or more
preliminary curve estimators, compute derivative estimators from those, and substitute back
into (2), it is called the plug-in approach to local adaptive bandwidth selection.

Miiller (1985) and Staniswalis (1989) showed that an empirical approach to selecting the
amount of smoothing is to employ pilot estimators to approximate those derivatives, and
substitute the approximate values into an analytical formula for the desired local bandwidth
such as (2). Gasser, Kneip and Koéhler (1991) studied an iterative plug-in approach. Recently,
Fan and Gijbels (1995) proposed a method which combines both plug-in and cross-validation
for local least squares regression.

Woodroofe (1970) introduced a version of the plug-in selector to use the data to choose the
bandwidth of a kernel density estimator. Also, Sheather (1986) developed a method so-called
"solve-the-equation” to overcome this difficulty. The basic idea is to substitute estimates into
an asymptotic representation of the optimal bandwidth. Such methods have been slowly gain
acceptance because care must by taken concerning which estimates are plugged in.

Now, for plug-in type estimator, let us consider the case of p=2 because it is simple but
important. When p= 2, the asymptotically optimal bandwidth, Rop 1S

_ Q s
how = {4”(kzm(2)(t)/2!)z} ‘ @

However, (8) still contains unknown m‘¥( 9, thus plug-in type estimator adapts > ( LA
as

DCTYEES Y JC=St )

where K'(2) = Ll)éi(—Sz“+6z2— 1), |2<1, the optimal kernel of order (2,4) from Gasser,

Miiller and Mammitzsch (1985). Thus, from (9), the optimal bandwidth that minimizes the
asymptotic mean square error is

. 5 3@ b
hon= { 4n(F; mT‘”(t)/4!)ZJ ’

where Q'= f_llK'z(z)dz and k= f_l124 K'(2)a-z.
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Therefore, the estimated plug-in type bandwidth can be expressed as .

~2 1/5

ﬁﬁlug = /\(2?
An(ky, m “ (thi/21)?

(10

3. Finite Sample Simulation

We conduct a simulation study to evaluate and compare the proposed approach with the
bandwidth selectors described in Section 2.

To estimate A defined in (6), we only need to estimate ¢°. For this purpose, we use the

estimator proposed by Gasser, Sroka and Jennen-Steinmetz (1986) and used by Stainswalis
(1989) which has the form

~A2 —
77 T"l_——z-)— Z;[yi_l_zyf+yi+l]2.

The t,'s are generated from the uniform distribution on [0,1]. The sample size is taken as

n=50 and n= 100 for comparisons of numerical performance based on sample sizes. Normal
errors 0=0.2 is used throughout. The true regression function is

m(H)=—1.2sin(3.57t+2.5) + sin(1.87t—2) (11)

with an equidistant design on [0,1].

A simulation is undertaken to compare the optimal bandwidth given in (2), the local
adaptive bandwidth given in (5) and the plug-in bandwidth from (10).

In order to simplify the simulation study, the case of $=2 is considered. For Kp(z) used to

get £, the Epanechnikov kernel, K(z)=%(1—z2), |4<1, is used as a second order kernel,

also the kemel K(z) = %(724—-1022+ 3), |2<1, which is found by Gasser and Miiller (1979)

and Gasser, Miiller and Mammitzsch (1985), is used as the 4th order kernel. For the

predetermined grid of bandwidths that are used to estimate A and B, seven equally spaced
bandwidths between 0.06 and 0.3 are used. These are obtained through simulations, also
simulation results reveals that small changes in predetermined minimum and maximim

bandwidths do not severely affect the overall performance of 17;,. To make comparisons, the
true m @(#) and m“(H that can be obtained from (11) are used for ho and ko,
respectively,

Table 1 and Table 2 give the results for the asymptotic true optimal bandwidth from
equation (8), the local adaptive bandwidth given in (5) and the plug-in type bandwidth from

(10). We can clearly see that ﬁ, closely estimates the true optimal bandwidth and is
competitive with plug-in estimator. In fact, it can be realized that fz, is more stable than

ﬁﬂug when the sample size small. For overall, ﬁ, shows better performance than ﬁp,ug.
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Table 1 Table 2
(n=50, 6=0.2) (n=100, 6=0.2)

t hop h, Ppie / Pop h, ot
0.02626 | 0.08084 | 0.08831 | 0.08303 0.02311 | 0.06802 | 0.05083 | 0.05343
0.10707 | 0.07172 | 0.06133 | 0.06088 0.10351 | 0.06427 | 0.05159 | 0.07032
0.22828 | 0.06384 | 0.05866 | 0.04333 0.12361 | 0.05613 | 0.05633 | 0.06020
0.24848 | 0.05529 | 0.05237 | 0.04274 0.29447 | 0.05575 | 0.05249 | 0.03817
0.30909 | 0.06966 | 0.04749 | 0.04467 0.30452 | 0.05890 | 0.05072 | 0.04255
0.45050 | 0.06392 | 0.06972 | 0.04311 0.31457 | 0.06305 | 0.04930 | 0.06751
0.47070 | 0.06138 | 0.05993 | 0.04193 0.42512 | 0.06133 | 0.07746 | 0.05163
0.51111 | 0.06087 | 0.05410 | 0.04192 0.55577 | 0.05881 | 0.05211 | 0.04537
0.69292 | 0.07102 | 0.06877 | 0.04635 0.67638 | 0.06869 | 0.06619 | 0.05165
0.71313 | 0.06531 | 0.06976 | 0.04490 0.79678 | 0.05263 | 0.05388 | 0.03348
0.81414 | 0.06467 | 0.06803 | 0.04438 0.82713 | 0.05902 | 0.05039 | 0.03223
0.95555 | 0.06766 | 0.06147 | 0.05564 0.93768 | 0.06733 | 0.07383 | 0.05660

0.20 025 0.30
1 ] 1

bandwidth
0.15
1

0.05
1
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1

Figure 1 : Overlaying estimated local bandwidth plots of
hoy (dotted line), /1, (dashed line), /iy, (solid line)
with =100, ¢=0.2
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For comparison, the overlay plots of A, 2,, and ﬁ,,ug are shown in Figure 1. It can be

seen that an appropriate pattern of local smoothing has been achieved. Some small discrepancy

between £, %, and ﬁ,;ug is caused by random error. That is, there is a tendency for %, to

follow the asymptotically optimal bandwidths and the plug-in bandwidths. This resull is also
supported by Figure 2.

Since the goal of nonparametric regression is to fit an entire curve that shows relations
between independent and dependent variables, it is important to investigate the finite sample
behavior of the whole estimated curve.

Figure 2 shows the overlay plots of the true and estimated curve with observations. We
can see that the estimated curve is well-fitted to the true curve. That is, the proposed
method detects the bimodality of the true curve and very sharp slope of both ends, hence it is
stable for a finite sample. This simulation demonstrates that the proposed method is stable
and the estimated curve is close to the true curve for even small sample as well as large
sample size.

Figure 2 : Overlaying plots of estimated curve with
%, (dotted line), observations (points) & true function (solid line)

with 72=100, 6=0.2
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4. Concluding Remarks

The merit of the proposed approach is that it does not require an initial value to estimate
the optimal bandwidth, also it could be applied to the global bandwidth selection method as
well as nonparametric density estimation. Since the proposed method tries only to find the
intersection of variance and squared bias, ie., find the point of balancing variance and squared
bias, using variance and bias estimators, we need not search for a minimum of mean square
error from noisy curve. Thus, it is simple and practical.

We expect that the concern about the boundary bias would not be so great, however the
boundary problem still need to take account.
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