• 제목/요약/키워드: Kelvin's functions

검색결과 8건 처리시간 0.024초

FUNCTIONAL RELATIONS INVOLVING SARAN'S HYPERGEOMETRIC FUNCTIONS FE AND F(3)

  • Kim, Yong-Sup;Hasanov, Anvar
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권1호
    • /
    • pp.43-57
    • /
    • 2012
  • By simply splitting the hypergeometric Saran function $F_E$ into eight parts, we show how some useful and generalized relations between $F_E$ and Srivas- tava's hypergeometric function $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables.

Serendipitous Functional Relations Deducible from Certain Generalized Triple Hypergeometric Functions

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Kyungpook Mathematical Journal
    • /
    • 제52권2호
    • /
    • pp.109-136
    • /
    • 2012
  • We aim at presenting certain unexpected functional relations among various hypergeometric functions of one or several variables (for example, see the identities in Corollary 5) by making use of Carlson's method employed in his work (Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2)(1970), 232-242).

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe
    • Coupled systems mechanics
    • /
    • 제5권2호
    • /
    • pp.157-190
    • /
    • 2016
  • This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

양향성 대륙붕의 대륙붕파 (II): 선형함수적 해저지형에서의 자유파 (Coastally Trapped Waves over a Double Shelf Topography(II) : Free Waves with Linear Topographies)

  • 방익찬
    • 한국수산과학회지
    • /
    • 제25권6호
    • /
    • pp.443-456
    • /
    • 1992
  • 황해에서와 같은 선형의 양향성 대륙붕 해저 지형에서 저주파의 분산관계가 단주기$\cdot$단파까지 포함하는 장주기$\cdot$장파 경우에 대해 유도되었다. 선형의 양향성 대륙붕에서 장주기$\cdot$장파일 경우 Bessel 방정식이 유도되는데 비해 일반적인 경우에는 Hummer 방정식이 유도된다. Hummer 방정식의 해로 유도되는 confluent Hypergeometric 함수는 극한 경우에 여러 형태로 바뀐다. 단일한 대륙붕에서는 해안선과 수직한 방향의 대륵붕 규모가 Rossby deformation radius에 비해 많이 작을 때는 수평흐름의 수렴$\cdot$발산효과가 무시되지만 양향성 대륙붕에서는 수평흐름의 수린$\cdot$발산효과가 해안선과 수직한 방향의 대륙붕규모가 관계없이 파동역학에 결정적으로 중요하다. 수렴$\cdot$발산효과는 Kelvin 파를 포함시키며 대륙붕파의 파속을 감소시킨다. 끝으로 양향성 대륙붕의 비마찰 eigenfunction들의 직교가 증명되었다.

  • PDF

Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Shamim, Raja A.;Ahmad, Manzoor;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.809-817
    • /
    • 2020
  • In cells, the microtubules are surrounded by viscoelastic medium. Microtubules, though very small in size, perform a vital role in transportation of protein and in maintaining the cell shape. During performing these functions waves propagate and this propagation of waves has been investigated using nonlocal elastic theory. But the effect of surrounding medium was not taken into account. To fill this gap, this study considers the viscoelastic medium along with nonlocal elastic theory. The analytical formulas of the velocity of waves, and the results reveal that the presence of medium reduces the velocity. The axisymmetric and nonaxisymmetric waves are separately discussed. Furthermore, the results are compared with the results gained from the studies of free microtubules. The presence of medium around microtubules results in the increase of the flexural rigidity causing a significant decrease in radial wave velocity as compared to axial and circumferential wave velocities. The effect of viscoelastic medium is more obvious on radial wave velocity, to a lesser extent on torsional wave velocity and least on longitudinal wave velocity.

초소형 밀폐형 이상 써모싸이폰 기포의 거동에 관한 해석적인 연구 (Analytical Study on the Behavior of the Bubble in the Micro Two-Phase Closed Thermosyphon)

  • 이윤표;이영수;이영
    • 설비공학논문집
    • /
    • 제5권2호
    • /
    • pp.85-93
    • /
    • 1993
  • The rise of a large gas bubble or slug in a Micro Two-Phase Closed Thermosyphon with a thin wire insert has been analiged by the potential flow theory. The effect of the interfacial surface tension is explicitly accounted by application of the Kelvin-Laplace equation and solved for the bubble shape. The solution is expressed in terms of the Stokes stream function which consists of an infinite series of Bessel functions. The conditions of the bubble movement in a Micro Two-Phase Closed Thermosyphon were theoretically ascertained.

  • PDF

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Hosseini-Hashemi, Shahrokh;Khaniki, Hossein Bakhshi
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.249-262
    • /
    • 2018
  • In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.