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Coastally Trapped Waves over a Double Shelf Topography(II):

Free Waves with Linear Topographies

Ig-Chan PANG
Department of Oceanography, National University of Cheju,
Cheju 690-120, Korea

For a linear double shelf bottom topography as in the Yellow Sea, the dispersion relation
of coastally trapped waves is derived for the general case including high-frequency and
short waves and for the case of low-frequency and long waves. With linear bottom
topography, the governing equation is Bessel's equation for the latter case but Kummer’s
equation for the former case. Hypergeometric Functions, which are the solutions of
Kummer’s equation, are derived and converted to various special functions for the limiting
cases.

On a double shelf topography, the divergence effects of horizontal flow are important
for the wave dynamics, irrespective of cross-shelf dimensions, while on a single shelf they
are usually neglected when the cross-shelf dimension is much smaller than the Rossby
deformation radius. The divergence effect allows the existence of Kelvin wave and reduces
the phase speeds of continental shelf waves. Finally, the frictionless eigenfunctions are
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proved to be orthogonal.

Introduction

The theories of coastally trapped waves have
gradually been established and now there is little
doubt about that coastally trapped waves play an
important role in the coastal ocean response to ap-
plied wind stresses. The theories have been first
developed for the single shelf case(Buchwald and
Adams, 1968; Gill and Schumann, 1974; Huthnance,
1975, 1978; Brink and Allen, 1978; LeBlond and
Mysak, 1978; Clarke and VanGorder, 1986; etc.)

and thereafter for the various cases of different

shelf such as submarine banks and trenches
(Louis, 1978; Mysak etc., 1979, 1980, 1981; Brink,
1983). Recently, the theory for the double shelf
case has been reported. Hsueh and Pang(1989)
have developed the theory and shown a good asse-
sment of its application to the Yellow Sea. Pang
(1991) has shown the general properties of coasta-

lly trapped waves over an exponential double sheif
topography. An exponential topography allows anal-
ytical solutions in the whole ranges of wave num-
ber for non-divergence case. Over a double shelf
topography, two sets of waves propagate in oppo-
site directions, with the shallow waters to the right
in the northern hemisphere. The group velocities
of shelf waves have the same direction as the
phase velocities in the long waves, but the opposite
direction in the short waves.

An exponential topography, however, does not
allow analytical solution for divergence case. The
horizontal flow divergence is essential for explai-
ning a major part of the ocean response on a dou-
ble shelf(Hsueh & Pang, 1989), while it is ignored
on a single shelf when the cross-shelf dimension is
much smaller than Rossby deformation radius.
Analytical solutions for divergence case could be
obtained by a linear topography. Hsueh & Pang
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(1989) have obtained them for long waves. Howe-
ver, in spite of the basic establishment, the theory
should be further developed to include short waves
and the prove the orthogonality of the bases. The
purpose of this paper is to develop the theory of
coastally trapped free waves over a double shelf
topography for divergence cases. It is extended to
short waves, which is necessary for small scale
coastal ocean dynamics such as reflecting or scatte-
ring, and the orthogonality is proved for eigenfunc-
tion expansions.

Field Equation and Boundary
conditions

Small perturbations to a barotropic ocean satisfy
the equation:

HP .+ Hupxe + Hpy + fHipy + (I‘px) x

32 —_ 2
£ g“’ p=— L g‘” pu (Y= X,) (D

In this equation, X, y, t, p, g f, r, H, p., X and
Y refer respectively to cross-shelf distance(east-
ward positive), alongshore distance(northward po-
sitive), time, perturbation pressure divided by
mean water density, acceleration due to gravity,
Coriolis parameter, bottom resistance coefficient,
water depth, atmospheric perturbation pressure di-
vided by mean water density, kinematic stresses in
x and y direction at surface{the wind stresses divi-
ded by mean water density). Subscripts indicate
derivatives.

We have chosen the Yellow Sea to examine a
double shelf system. Fig. 1 shows the bottom topo-
graphy of the Yellow Sea and the bathymetric tran-
sects used for some illustrating calculations. A sim-
ple approximation to the depth profile of the dou-
ble shelf is shown in Fig. 2.

Fig. 2 shows a schematic representation of the
coordinates system and geometry of two shelves of
linear depth profile and a level intervening region.
To begin with, an intervening region is put bet-
ween the two shelves so that shelf 1, intervening
region, and shelf 2 are placed in -Bi=x=<, 0=x=<L,,
and L.<x<B,, respectively. So, the linear bottom
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Fig. 1. Map of the Yellow Sea. Sections labled A and
B are those along which depth profiles are

taken.

topography (H) can be set as follows:

+
H=H, 270 [ <x<0
L
in shelf 1
H(x)=| H.=Hp 0<x=Ly
in middle area (2)
H,=-H, Ii:lfm Ln<x<L,
in shelf 2

At the coastal boundaries, the no-flux boundary
condition is applied, which means that the depth
integrated offshore velocity vanishes. For most ca-
ses of coastal ocean dynamics, wind stresses are
applied through the coastal boundary condition.
Near coast, the Ekman flux produced by along-
shore wind stress gives rise to the convergence
and divergence fluxes, which drive the interior
flow. Consequently, the interior flows are driven by
the wind stress applied through the coastal boun-
dary condition. In the case of a linear depth profile,
Mitchum and Clarke(1986) have concluded that
the place where the water depth is about 3 times
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the Ekman layer thickness is the best place for the
imposition of the no-flux condition. At x=0, L., the
‘continuous pressure’ and the ‘continuous trans-
verse velocity’ boundary conditions are applied, as
follows:

r Y

P+ h Py, + fP\y:fT at x=-B) (3-1)

P,=P,, at x=0 3-2)

Pix t P1y=Prxe + {Prmy, at x=0 3-3

Po=P>, at x=Ln (3-4)

Pt T Py = Poxe + 1Py, at x=L, (3-5)
Y

Pat — put Py =f - at x=B (3-6)

To solve the above eigenvalue problem, either
frictionless eigenfunction or frictional eigenfunction
can be used. Frictionless eigenfunction has been
used conventionally, but Webster(1985) has started
to use frictional eigenfunction. In this work, frictio-

nless eigenfunction is used.

H|(X)=HO(X L()/Ll
H (x)= —Holx-L2)/(Lz-Lm)

Fig. 2. Schematic representation of the coordinate
system and geometry of two shelves of linear
depth profile and a level intervening region.
The coordinates x, y, and z refer to the cross-
shelf, alongshore, and vertical directions and
are oriented eastward, northward, and upward,
respectively.
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Dispersion Relations

1. General Case including High-frequency and
Short-waves
The field equation (1) yields for divergent and
inviscid free waves

f£f—w’

prxt + prxt+ pryt + foDy - pt= 0 (4)

Upon substituting for the pressure, p=F(x)¢(y+
ct), (4) yields

2 ..
(HF)' — #HF + {H'F+ i &

F=0 (5)

where the ‘prime’ means the derivative with res-
pective to x, and 4, w, and c are, respectively, wave
number, frequency, and phase speed, such that
CZ%. Equation (5) with the depth profiles given
by (2) yields the following eigen value problem for
the frictionless eigenfunction F(x):

2__
laGer LR Y+ (-ext £+ @ Eyp g
C ga
-L1<x<0 (6-1)
2__
porl-e+ 28 o
gHo
0<x<La (6-2)
2__
(BT +(-ext L+ & yp =g
c gp
La<x=L, (6-3)
finite condition at x=-L; (7-1
F.=F, at x=0 (7-2)
F/=F. at x=0 (7-3)
Fu=F, at x=L. (7-4)
Fo' =F at x=L, (7-5)
finite condition at x=L, (7-6)

F), Fu and F; represent the eigenfunctions over,
respectively, the shelf 1, intervening region, and
shelf 2. a and B are the slope coefficients of shelf
1 and shelf 2, respectively.

The solutions of (6) are

Fi1=Cexpl- | 4] (x+L]
Mla,1,2 1 €] (x+L)]

-L.<x<0 8-1)
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Fn=Aexp(mx) +Bexp{-mx)

0<x<Ln (8-2)
Fo=Dexpl 14 (x—L,)]
Mlay1,2 14| (L,—x)]
La.<x<L. (8-3)

where M is the confluent hypergeometric function
M(abx). A, B, C, and D are arbitrary constants,
and a;, a; and m are given by

IR S e
a=12" S 21l a
Y w’—f

=1/2+
=124 ST T 2g 171 B

(o OBy,
m= (£ oH, V
There are two confluent hypergeometric functions
M(ab,x), Ulabx) to satisfy Kummer's equation.
The finite boundary condition get rid of U{a,bx)
which has a singularity at x=0. The dispersion re-
lation is

tanh(mL) ([ 121 2+ mZIMM;—2 | 2] ZasM,M,
—2 12| 2aM;M;3+4 | 2] 2a2M:My)
=214 m(MMy—a;MiMs—aM:Ms) =0 (9)

where M,=M(a,1,2 | 2] LD,
M,=M(a;+122 141 Ly),
M;=M(a;,1,2 141 (Lo~ LaD),
M,=M(a;+1,22 14! [L,—L.D.

When L., goes to infinity as shown in Fig. 4(a),
the dispersion relation (9) reduces to

([ [ ¢} —m]M1—2 [ £] ale) *

(€12l —mIMs— | 2] aM) =0 (10

which yields two independent sets of waves as fol-

lows:
_ |2}
M/M= TTa =y
Ma/ Mz = 12| v
T (L~ L (4] —m)

since Mix=2LiajM; and Ma=2(L,—Ln)asMs. For
non-trivial solutions, 2, and as must be negative,
which give the positive and negative phase speeds,
respectively.

When L, goes to zero(double shelf case) as
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shown in Fig. 4(b), it yields

MM;— asMiM;—aMoM3;=0 (12)
. oM M,
This can be changed as 1—as M, a M, P,
therefore,
Mo p if 4<0, 23>0 (13-
Mlx 2L1 '
M; P2 .
== M f >0, ;<0 (132
My Z(LZ_Lm)(Dz_l) if >0, 2:<0 ( 3 )
M
where plzl*ag—M—:and pzzalﬁ. They are

dependent on the both shelves through p.

In this case the dispersion relation (9), (10),
(13) include Kelvin waves, continental shelf waves,
and Poincare waves. Confluent hypergeometric fu-
nction is converted to various different functions,
such as Bessel Function, for some limiting cases.
It could cover theoretically whole ranges of coasta-
lly trapped waves. However, confluent hypergeo-
metric function has not been fully developed so
that it is not practical yet to use (9). Mostly, we
are looking at the case of low-frequency and long
waves. The dispersion relation for the limiting case
will be derived additionally in the next section.
Therefore, the above results only show a possibility
to expand the theory of coastally trapped waves to
the general case in the future. Presently, the shelf
wave theory for low-frequency and long-wave case,
which is shown in the next section, is needed.

2. Low-frequency and Long Wave Case

The usual low-frequency and long-wave approxi-
mation will be invoked in this section. The field
equation (1) yields for divergent, inviscid, low-fre-
quency, long free waves

£
(Hpe «+ H,Py— Ept—() (19

Upon substituting for the pressure, p=F(x)¢(y+
ct), (14) yields

f2

mr) +Lar- L r=o (15)
c g

where the ‘prime’ means the derivative with res-
pective to x and c¢ is the phase speed. Equation
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Z
L =B + Lm Bz L2
X
Ho infinitely wide
(A)
Z
- =B TO B2 L2
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double snelf
(8)

Fig. 3. Schematic representations of the cross-shelf sections for (A) two shelves with an infinitely wide
intervening region, and (B) a double shelf (two adjoining shelves).
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Fig. 4. Schematic representations of the cross-shelf for (A) a single shelf adjacent to an infinitely deep water
region, (B) a single shelf adjacent to a region of the finite depth equal to the greatest depth of shelf, and
(C) a double shelf. The greatest depth of shelf are 100m for all cases and the shelf widths are 100m
and 500m in each case.
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(15) with the depth profiles given by (2) yields
the following eigen value problem for the friction-
less eigenfunction F(x):

La(x+LI)F/T+wFi=0 -Lisx<0 (16-1)
Fu'~A2Fn=0 0<x<Ln (16-2)
[B(X_LZ)F2,1’+[12F2:O L.<x<L, (16"3)
F1'+%F1:O at x=-B, (17"1)
Fi=Fn at x=0 (17-2)
F/'=Fa at x=0 17-3)
Fu=F. at x=L. (17-4)
F.' =F,/ at x=Ln (17-5)
Fz"l‘%Fz—O at x=B; (17‘6)
where :‘—_12— =£——fl—
H ga y e c gB y
{2 H, H,
2 - = — = ——
g L P

Here, F;, F, and F, represent the eigenfunctions
over, respectively, the shelf 1, intervening region,
and shelf 2. A is the reciprocal of barotropic defor-
mation radius, and o and f§ are the slope coefficie-
nts of the shelves 1 and shelf 2, respectively.

The solution of the above eigenvalue problem
leads to a dispersion relation that allows the deter-
mination of phase speed c, as follows:

Jo(2b)Jo2by) (£ Ju(2by) ].

el (2 e by o)
i_ﬂ Jl(th) . iy Y1(281) .
b b T ) P Yotza
_ ﬁ YI(Zaz)
b 2 Yo(Zaz)J

o Jo(2b)Yo(2be) (g Ji(2by) -

exp i) S olza) e by Jo(2by)
i_ﬂz_ Y1(2bz) . M Y1(281) .
[C b2 Yo(sz)] D\+ a3 Y0(231)]
_ & J1(229)
2 a2 10(282)

_ R Yo(2b1)]0(2b2) i_ﬂ Y1(2b1) .

exp( mng) Yo(Zal)Jo(Zaz) 4 b1 Yo(Zbl)]
£ 1) o o, o 3h{Za)
e o M )
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_ _,ui Y;(Zag)
D\ dz Yo(zaz)
i Yo(2)Yo(202) f  n Yil2hy) -
+exP( mlLZ) Yo(281)Y0(282) [+ by Y()(Zbl)]
£ o Yl 5 o om 1)
[C b Yo(?bz)j Dd- ar ]0(231)
_ e 11(2a,)
D\ az Jo(zaz)
_ Jo(2b0)Jo(Zhe) - £ g Ja(2by) -
explmlo) Jo(2a)Jo(2a2) "¢ by Jo(2b1)]
£ e Ni0e) ¢ o Yi(%a) o
% 1@ )
.2 Y](Z&z)
DL+ az Yo(zaz)]
Jo(2b)Yo(2be) - £ Ju(2by)
+exp(m1L2) ]0(2&1)Yo(262) ¥ b] JO(Zbl)
_f____& Y1(2b2) Ly M Y1(2a1) .
[C bz Yo(sz)] DL a1 Yo(Zal)]
e 1:(2a,)
b a 10(232):]
Yo(2b:)Jo(@bs) £ i Ya(2bo) -
+eXp(m1L2) Yo(281)]o(232) C by Y0(2b1)}
£ B o o om N,
[C by ]()(sz)] D\' a Jo(Zal)]
L}z_ Yl(Zaz)
[t az Yol2ap)
_ Yo(Zbl)Yo(sz) i_ﬂ Y1(2b1) .
exp(mle) Y0(281)Y0(232) C b1 Yo(2b1)]
i_ﬂ Y1(2b2) ra M 11(231) .
[C b2 Yo(sz)] D\ 41 10(281)]
e Ji(2a,) -
D\+ az 10(2212)] 0 (18)

where a;= (L)Y, 2,= (-l L~ LaDY?, b= (il -
Bi+ L)Y, hy={([B:—~Ls1)"?, and Jn and Y, refer
to the mth order Bessel Functions of the lst and
2nd kind, and A, w, W are given above,

When L. goes to infinity as shown in Fig. 3(a),
the dispersion relation (18) reduces to

|

Jo(Zb;) i*ﬂ J](2b1) .

10(231) C bx Jo(2b1)
- A4 Yi(2a) 5 Yo(2by)
ax Yo(Zal) Yo(2a1)
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£ m Yi(2by) 1= A $1(2a)
C b1 Y0(2b1) ai Jo(2a1)

J0(2b2) i___,ul J1(2b2) R
Jo(Zaz) C b2 Jo(sz)
M2 Y1(232) _ Yo(2bz)
az Yo(zaz) Y0(232)

£ e Yi@b) 4 . m 1i(2a) _
|:C by Yo(sz):I [ a Jo(2a) ]]

(A=

a9

This shows two independent sets of coastally trap-
ped wave, which means that if the shelves are
apart sufficiently enough, two sets of coastally trap-
ped waves do not interact with each other, as for
an exponential topography (Pang, 1991).

When L. goes to zero(double shelf case) as
shown in Fig. 3(b), it yields

arpJo(2b1) Jo(2b2) Yo(2a1) Y1 (2a5)
[i_ﬁl_ Li(2by) - £ Ji(2by)
c b Jo(2) 7 "¢ b Jo(2bY)
—ayedo(2b1) Yo(2by) Yo(2a1) J1(2a;)
i__ﬂ J1(2b1)] i__& Yl(2b2)]
C b1 J0(2b1) (o} bz Yo(2b2)
—alszo(2b1)J0(2bz)Jo(2a1)Y1(2az)
[_f__ﬁx_ Y,(2by) £ e 1i(2b)

C b1 Yo(2b1) C bz J0(2b2)
+alyzYo(Zbl)Yo(sz)Jo(zal)Jl(232)

£ Yi(2b) (L Y1(2b2)]

c b Yo(2b) 7 "¢ b Yo(2by)
_azl.ll_lo(Zb])Jo(sz)Yl(za])Yo(zaz)

[i _ M J1(2b) f M2 J:1(2by)

C b1 Jo(2b1) (o b2 JO(sz)
+ az10Jo(201) Yo(2b2) Y, (22,) Jo( 2a2)
[i M J:(2by) [f h Y, (2by) ]

C b1 Jo(2b1) c bz Yo(2bz)
+agin Yo(2b1) Jo(2b2) J1(2a1) Yo(2a,)

[i_ﬂ Y1(2b1)] [_f___ﬂ_ ]1(2b2)]

¢ b Yo(2b) ™ "¢ by Jo(2b2)
—aynYo(2b1) Yo(2b2)J1(2a1) Jo(2a2)

£ om Yi(@b) o f e Yi(2by)

C by Yo(2b1) C b Yo(sz)]
=0 (20)

The dispersion relation implies that the two sets
of wave are dependent on each other if two shel-
ves are close while they become independent si-
ngle shelf waves if two shelves are separated far
enough. The phase speeds c of two sets of waves

is ga/f>c>0 and gB/f<c<0, respectively. For the
range of go/f>c>0, the set of waves propagate
southward, while for the range gf/f<c<0, the set
of waves propagate northward.

The dispersion relation looks complicated but its
essential characteristics are the same as for a non-
divergent case(Pang, 1991), except the 1st modes.
The(exponential or linear) bottom shape itself does
not make any basic difference. It should be noted
that a linear topography is adapted in this paper for
analytic solutions to a divergent case. In the diver-
gence case, the phase speed of first modes shows
different characteristics from that of the rest mo-
des. It is comparable to the phase speed of gravity
waves.

Table 1 shows phase speeds for 3 different cases
of bottom topography: (A) a single shelf adjacent
to an infinitely deep water region, (B) a single
shelf adjacent to a region of the finite depth equal
to the greatest depth of shelf, and (C) a double
shelf. The greatest depth of shelf are 100m for all
cases and the cases (A) and (C) have 2 sub-cases:
a non-divergence case and a divergence case. The
case (B) does not include a non-divergent case, si-
nce the divergence effect is essential to allow sea
level fluctuations at the edge of shelf. Fig. 4 shows
schematic representations of the cross-shelf bottom
topography for the cases. From table 1, we can see
2 divergence effects.

One is for the 1st modes. For non-divergence
cases, the phase speeds of the 1lst modes are pro-
potional to shelf width, which is a characteristics of
continental shelf waves. However, for divergence
cases, the phase speeds of the lst modes vary in-
versely with shelf width. It is a characteristics of
Kelvin wave. The phase speed of Kelvin wave over
sloping bottom increases by steeper slope, which
corresponds to narrow shelf width.(It should be
qoted that the 1st mode in the case (a) show both
characteristics of Kelvin wave and continental shelf

- wave, because Kelvin wave is not allowed in the
infinitely deep water.) It is the reason why sea le-
“vel propagation is faster along the western coasts
of Korean Peninsula than along the eastern coasts
of China in the numerical model run for the 1980/
81 winter(Hsueh and Romea, 1983). The other is
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Table 1. The phase speeds of wave modes in the case of {(a) a single shelf adjacent to an infinitely deep water
region, (b) a single shelf adjacent to a region of finite depth equal to the greatest depth of the shelf,
and (c) a double shelf. The greatest shelf water depths are 100m for all cases.

shelf width

phase speeds (m/sec) of first 3 modes

case

(in km) 1 2 3 -1 -2 -3
non-divergent 6.16 117 048 - - -
100 divergent 5.83 1.16 047 - - -
A non-divergent 30.78 5.84 2.38 - - -
500 divergent 12.84 462 2.15 - - -
100 divergent 27.10 221 0.70 - - -
B 500 divergent 15.90 641 2.84 - - -
_ non-divergent 7.29 2.68 1.38 ~1.97 -0.64 -0.31
200100 divergent 14.70 531 237 -24.18 -192 -0.31
¢ ~500 non-divergent 8.37 293 148 -8.37 -2.93 -148
50050 divergent 15.23 5.76 2.55 -15.23 -5.76 -2.55
that divergence effect reduces the phase speeds of 1
continental shelf waves. oz
If sea level fluctuations are set to zero at the 5 °°
shelf break as in the case (A), the 1st mode has & e
Kelvin wave characteristics only when the shelf wi- é el A
dth is sufficiently large. However, if sea level fluc- g o
tuations are allowed at offshore end of the shelf as w 2
in the cases (B) and (C), Kelvin waves are always < "
present, irrespective of the cross-shelf dimension. e e
Fig. 5 shows the phase speeds of the first 3 con- .»;ZT _ ‘ ‘
tinental shelf wave modes in the 400~80km double { 2 3
shelf case as shown in the section B of Fig. 1. Di- MODE
vergence effect is included, so that there are Kel- "
vin wave modes as the 1st modes(the phase 61
speeds of Kelvin wave modes will be mentioned 5 |
later in Fig. 8.). The panels (A) and (B) in Figs. ié (B)
5~9 are for the waves propagating northward 2 *]
along shelf 2 and southward along shelf 1, respecti- § 3
vely. The magnitude of phase speed of the waves w )
propagating southward is much more greater than §
that of the waves propagating northward, because W
of the wider shelf width. In Fig. 6, (a) is the same o . . ‘
as in Fig. 5 but (b) is for a non-divergent case ! " :DE 2
over the same double shelf. Compared to a non-di-  [ijg 5 Phase speeds of the first 3 continental shelf

vergent case, the phase speeds of continental shelf
waves are reduced by divergence effects. The rate
of reductions is greater in lower mode, up to about
35% in the first mode of continental shelf waves
propagating southward.

450

wave modes over a 400~80km double shelf
for divergent case. Panels (A) and (B) are of
the waves propagating northward along the
shelf 2 and southward along the shelf 1,
respectively. Phase speeds of Kelvin waves are
shown in Fig. 8.
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6. Phase speeds of the first 3 continental shelf wave modes over a 400~80km double shelf for (a)
divergent case and (b) non-divergent case. Panels (A) and (B) are of the waves propagating north-
ward along the shelf 2 and southward along the shelf 1, respectively.
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Fig. 7. Phase speeds of the first 3 continental shelf wave modes over (a) a 400~80km double shelf and
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(b) 300~120&m double sheif for divergent case. Panels (A) and (B) are of the waves propagating
nosthward along the shelf 2 and southward along the shelf 1, respectively.
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Fig. 8. Phase speeds of the Kelvin wave modes and the first 3 continental shelf wave modes over (a) a 400

~80km double shelf and (b) 300~ 120km double shelf for divergent case. Panels (A) and (B) are of
the waves propagating northward along the shelf 2 and southward along the shelf 1, respectively.
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The phasé speeds of continental shelf waves are
also dependent on the coupled shelf widths in a
double shelf. To see the variations of phase speeds
by coupled shelf widths, two sections across the
Yellow Sea as shown in Fig. 1 are selected. The
shelf widths used in Fig. 7 are 400~80km for (a),
as in Fig. 5, and 300~120km for (b). The phase
speed of the continental shelf waves get larger for

the waves propagating northward and smaller for
the waves propagating southward. On the other
hand, the phase speeds of Kelvin waves are affec-
ted only a little and even reversely by shelf width.
The Kelvin waves are shown in Fig. 8, which is the
same situation as Fig. 7. Phase speed of Kelvin
wave is rather faster with smaller shelf width and
hardly vary with the variation of shelf width.
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Fig. 9. The cross-shelf amplitudes of eigenfunction of the first 3 modes (Kelvin wave mode and the first 2
continental shelf wave modes) over a 400~80km double shelf for divergent case. Panels (A) and (B)
are of the waves propagating northward along the shelf 2 and southward along the shelf 1, respectively.

Eigenfunctions and their Orthogonality

The eigenfunctions for the double shelf are as
follows:

Fi
F2
A a“;l [36(22,) Yi(2a0) — J1(20) Yo(222) ]

K|~ Gudol 2l (x+ L) }m] +
GuYo[Q{U;(X"f’ Lx) }1/’2

in the shelf 1

in the shelf 2

it

Fi
for gB/f<c<0
A[JOEZ{Ul(X‘*' Lx)}m] -
(T4/ Tz) ’ Yo[2{ﬂ1(x+ L1)}m
for ga/f>c>0
(21-1

— Al Jo[Z{uz(X“ 14)}112] -
(To/ Ty - chz{ugu—m}lﬂ

for gf/f<ce<0
= | A a“;,g [1(2a0Yi(2a) — J1(2a) Yo(2a) ]

X~ GaaJol 2{ua (x — L2+
- Gngtz{m(x*w}W]

for ga/f>c>0
(21-2)

where A is a arbitrary constant and
Gu= £ Jo(2by) — 2 11(2by)
¢ |33}

Gm: Yo(be) %1‘ Y1(2b1)
1

£

C
G = ’g'}z)(zt)z) hd BZ“J}(sz)
c b
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Gr= L ¥s(2by) — 22 y,(2by)
c be

[— JI(ZaI)YO(zaZ) - :ﬂj Jo(2a1)Y1(232) ]Glz

- [£Y1(2a1)Y0(2a2) -2 Yo(Zal)Yl(Zaz)]Gn
a1 ag
[_ Jl(Zal)Jo(zaz) - —:‘:‘ JO(Zal)Jl(ZaZ)]GIZ

:—in(Zax)Jo(Zaz) - —:;- Yo(22)1:1(222) 1Gn

T3: [ ——:I—Yl(2al)Jo(Zaz) + % Yo(2a1)11(2a2):|G22
-[- %Yl(2a1)Yo(Zaz) + % Yo(2a1)Y1(22,) 1Gs

[_— Jl(Zal)Jo(Zaz) + — Jo(zal)J1(zaz)]G22

- E—%maovo(zaz) + ~Jo<zal>Y1(zaz>JGm

Fig. 9 shows the amplitudes of the first 3 eifen-
functions across the shelf: (A) for gB/f<c<0 and
(B) for ga/f>c>0. Thus the sets of waves in Fig.
9 (A) and (B) propagate northward(into paper)
along shelf 2 and southward(out of paper) along
shelf 1, respectively. The 1st eigenfunctions are
Kelvin wave. They have their maximum amplitudes
at coast and decay exponentially across the whole
shelf, without any node. They appear only when
horizontal divergence is allowed. The rest eigenfu-
nctions are continental shelf waves. They oscillate
over one shelf and extend in an exponential decay
over the other shelf. The 2nd modes are the lst
modes of continental shelf waves and have 1 node
across the shelf. 3rd modes are the 2nd modes of
continental shelf waves and have 2 node across the
shelf, and so on.

Next the orthogonality of eigenfunctions should
be proved for eigenfunction expansion.

(x) pu(y+cat), the governing equation and boun-

Upon substituting for the pressure, p=

dary conditions for a double shelf topography are
as follows:

laGx+LIFw T+ - Za(x+ L)+

P TN ki P

L, <x<0 (22-D
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[B(x—L)Fxu')'+[-£B(x—Ly) +

PR Cis &
Cn
0<x<L, (22-2)
Fu'+ CiFl.,zo at x=-B; (23-D
Fio=Fan at x=0 (23-2)
Fln,:FZn' at x=0 (23_3)
Fz;.l + é FZn:() at X=B2 (23_4)

Multiplying the equations (22-1) & (22-2) by
Fn and integrating them across the shelves yields

§° Pral oGt L)Fy Vx4 Fanl B(x—Lo)FanT'dx

+[f_(1 Bl FlndX
+[f’3 4 @ F]f FonFandx
-éeuj' . (x+ L)FinFudx— 28] (x~Lo)FiuFiudx=0

(24

By integration by parts and using the boundary
conditions,

aLiF1n{0)F1,'(0) +~ (-B1+ LY Fim(-By) F1a(-By)

+LF( R 0+ '3 (-Bo+ L) Fan(-By)F1u(-By)
- a(x+L1)F1m'F1n dx— £ Bx~Lo)Fan'Fardx
+[fi

FlndX+ E“B‘ + (ﬂ_zg__f_]

f FszanX & (lf (X+ LyFiF 1..dX

—ezlsy " (x— Lz)FlmFl,,dx 0 (25)

Interchanging m and n and substracting them
yields

aly- [Flm(O)Fh,' (0) =Fin’ (0)F1n(0)]
+ BLo* [F2(0) Faa’ (0) — Fom' (0) Fa(0) ]
+ -5 [af \  FunFudx+ff . FanFundx
+ (l(L1 - Bl) Flm(—Bl)Fln(_Bl)

+B(L2"Ln)Fzm(Bz)F2n(Bz)]:0 (26)

The first two terms are zero by the boundary
conditions. Therefore, when m is not n,

of (_)Bl FinFidx+ B :2 FonFzdx—HFF, l?:l
27
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To see if (27) does not hold when m=n, sup-
pose to the contrary that

of ', Fuldx+ g Fudx—HF21 =0 (28)

Multiplying (22-1) by Fi, and (22-2) by Fs, and
integrating them across the shelf yields the follo-
wing equation by the relation (28)

I?Bl Fio-La(x+ L) Fi’'Tdx
+ 2 P [B(x— L) Fy' 1'dx

£ B f B
- Ejim F.,de‘i'-c: HF.2 |>Bl =0

Integrating by parts and using the boundary con-
ditions (23) leads us to

s [HF,2dx+ g— F2)dx=0 (29)

Since the integrand HF,%dx+ —:—Fnz is always

positive, the assumption (28) creats a contradiction.
Therefore, the assumption (28) does not hold
when m=n. This leads us, with (27), to the follo-
wing orthogonality condition.

of %, FinFiadx+ B ¢ FanFondx — HFwF, 15,

af %, Fuldx+ B 2 Fo2dx —HF.2 |72
=8mn (30)

This proves that the eigenfunctions of coastally
trapped wave over a double shelf are also orthogo-
nal. From the orthogonality of eigenfunction, the
method of eigenfunction expansion is possible for
the forced problem. (The frictional eigenfunctions
are not proved to be orthogonal, which is a difficu-
Ity in using the frictional eigenfunctions)

Discussion and Conclusion

For a single shelf adjacent to deep open ocean,
the divergence effect might not be important. It
depends on what kind of phenomenon we are loo-
king at. For wind driven coastal motions, the diver-
gence effect becomes important only when the
shelf width is comparable to the Rossby defroma-
tion radius. However, for a double shelf, which al-
lows sea level fluctuations at any place across cha-
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nnel, it is always important.

The divergence effect adds Kelvin wave to the
solution of coastally trapped waves. As over a flat
bottom, the amplitude of Kelvin wave has its maxi-
mum and decay exponentially away from coast. It
has no node across the shelf. Its phase speed is
modified by bottom slope, but essentially compara-
ble to that of gravity wave. As a shelf is wider, the
averaged depth is shallower, and therefore the
phase speed of Kelvin wave is slower. This makes
that the phase speed of Kelvin wave vary inversely
with shelf width. On the other hand, phase speed
of continental shelf waves is propotional to shelf
width.

As for non-divergence case, there are also two
sets of waves for divergence case. Each set include
one Kelvin mode and infinite modes of continental
shelf waves. The phase speeds of one set are posi-
tive and those of the other set are negative. The
phase speeds of the Kelvin waves are much faster
than that those of the continental shelf waves. The
phase speeds of the shelf waves are slower for the
higher mode. Thus, the 1st modes, which have the
maximum phase speeds, are the Kelvin waves, and
the 2nd modes are the 1st modes of continental
shelf waves, and so on. The nth modes have n-1
nodes across the shelf. All the waves propagate
with shallow waters to the right in Northern Hemi-
sphere.

The two sets of waves are independent if two
shelves are apart sufficiently and dependent on the
geometry of both shelves if two shelves are close
enough. The frictionless eigenfunctions of coastally
trapped waves over a double shelf are proved to
be orthogonal. It makes the method of eigenfunc-
tion expansion to be possible for the forced prob-
lem.

The dispersion relation is extended to high-fre-
quency and short waves. Even for the extended
case, the basic characteristics are preserved. The
dispersion relation covers some limiting cases, such
as low-frequency and long wave case. The exten-
sion is necessary for studies of reflection and scat-
tering, etc. The practical computations, however,
are not inaccurate yet since confluent hypergeome-
tric function is not fully developed.
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