• Title/Summary/Keyword: Kaplan-Meier

Search Result 687, Processing Time 0.024 seconds

THE EMPIRICAL LIL FOR THE KAPLAN-MEIER INTEGRAL PROCESS

  • Bae, Jong-Sig;Kim, Sung-Yeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.269-279
    • /
    • 2003
  • We prove an empirical LIL for the Kaplan-Meier integral process constructed from the random censorship model under bracketing entropy and mild assumptions due to censoring effects. The main method in deriving the empirical LIL is to use a weak convergence result of the sequential Kaplan-Meier integral process whose proofs appear in Bae and Kim [2]. Using the result of weak convergence, we translate the problem of the Kaplan Meier integral process into that of a Gaussian process. Finally we derive the result using an empirical LIL for the Gaussian process of Pisier [6] via a method adapted from Ossiander [5]. The result of this paper extends the empirical LIL for IID random variables to that of a random censorship model.

임의중단모형에서 신뢰도의 비모수적 통합형 추정량

  • 이재만;차영준;장덕준
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.685-694
    • /
    • 1998
  • 임상실험이나 신뢰성공학 분야에서 임의 중단자료를 이용한 비모수적 신뢰도 추정량으로 Kaplan-Meier 추정량과 Nelson형 추정량이 많이 사용되고 있다. 그러나 Nelson형 추정량은 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 우수한 반면 편의는 신뢰도가 감소함에 따라 양의 방향으로 점증하는 소표본 특성을 갖는다. Nelson형 추정량의 이러한 특성 때문에 신뢰도의 함수로 표현되는 잔여수명 분위수함수 등의 추정시에는 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 떨어짐을 볼 수 있다. 이러한 점을 고려하여 이 두 추정량을 가중평균으로 통합한 새로운 비모수적 신뢰도 추정량을 제안하고 추정량의 특성을 비교 분석하였다.

  • PDF

Smoothing Kaplan-Meier estimate using monotone support vector regression (단조 서포트벡터기계를 이용한 카플란-마이어 생존함수의 평활)

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1045-1054
    • /
    • 2012
  • Support vector machine is known to be the very useful statistical method in classification and nonlinear function estimation. In this paper we propose a monotone support vector regression (SVR) for the estimation of monotonically decreasing function. The proposed monotone SVR is applied to smooth the Kaplan-Meier estimate of survival function. Experimental results are then presented which indicate the performance of the proposed monotone SVR using survival functions obtained by exponential distribution.

An Empirical Central Limit Theorem for the Kaplan-Meier Integral Process on [0,$\infty$)

  • Bae, Jong-Sig
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 1997
  • In this paper we investigate weak convergence of the intergral processes whose index set is the non-compact infinite time interval. Our first goal is to develop the empirical central limit theorem as random elements of [0, .infty.) for an integral process which is constructed from iid variables. In developing the weak convergence as random elements of D[0, .infty.), we will use a result of Ossiander(4) whose proof heavily depends on the total boundedness of the index set. Our next goal is to establish the empirical central limit theorem for the Kaplan-Meier integral process as random elements of D[0, .infty.). In achieving the the goal, we will use the above iid result, a representation of State(6) on the Kaplan-Meier integral, and a lemma on the uniform order of convergence. The first result, in some sense, generalizes the result of empirical central limit therem of Pollard(5) where the process is regarded as random elements of D[-.infty., .infty.] and the sample paths of limiting Gaussian process may jump. The second result generalizes the first result to random censorship model. The later also generalizes one dimensional central limit theorem of Stute(6) to a process version. These results may be used in the nonparametric statistical inference.

  • PDF

Reliability Analysis under the Competing Risks (경쟁적 위험하에서의 신뢰성 분석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

A comparison study of inverse censoring probability weighting in censored regression (중도절단 회귀모형에서 역절단확률가중 방법 간의 비교연구)

  • Shin, Jungmin;Kim, Hyungwoo;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.957-968
    • /
    • 2021
  • Inverse censoring probability weighting (ICPW) is a popular technique in survival data analysis. In applications of the ICPW technique such as the censored regression, it is crucial to accurately estimate the censoring probability. A simulation study is undertaken in this article to see how censoring probability estimate influences model performance in censored regression using the ICPW scheme. We compare three censoring probability estimators, including Kaplan-Meier (KM) estimator, Cox proportional hazard model estimator, and local KM estimator. For the local KM estimator, we propose to reduce the predictor dimension to avoid the curse of dimensionality and consider two popular dimension reduction tools: principal component analysis and sliced inverse regression. Finally, we found that the Cox proportional hazard model estimator shows the best performance as a censoring probability estimator in both mean and median censored regressions.

Comparison of the Kaplan-Meier and Nelson Estimators using Bootstrap Confidence Intervals

  • Cha, Young Joon;Lee, Jae Man
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.4
    • /
    • pp.42-51
    • /
    • 1995
  • The bootstrap confidence intervals are a computer-based method for assigning measures of accuracy to statistical estimators. In this paper we examine the small sample behavior of the Kaplan-Meier and Nelson-type estimators for the survival function using the bootstrap and asymptotic normal-theory confidence intervals. The Nelson-type estimator is nearly always better than the Kaplan-Meier estimator in the sense of achieved error rates. From the point of confidence length, the reverse is true. Also, we show that the bootstrap confidence intervals are better than the asymptotic normal-theory confidence intervals in terms of achieved error rates and confidence length.

  • PDF

Estimation of the Survival Function under Extreme Right Censoring Model (극단적인 오른쪽 관측중단모형에서 생존함수의 추정)

  • Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.225-233
    • /
    • 2000
  • In life-testing experiments, in which the longest time an experimental unit is on test is not a failure time, but rather a censored observation. For the situation the Kaplan-Meier estimator is known to be a baised estimator of the survival function. Several modifications of the Kaplan-Meier estimator are examined and compared with bias and mean squared error.

  • PDF

Regression Quantiles Under Censoring and Truncation

  • Park, Jin-Ho;Kim, Jin-Mi
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.807-818
    • /
    • 2005
  • In this paper we propose an estimation method for regression quantiles with left-truncated and right-censored data. The estimation procedure is based on the weight determined by the Kaplan-Meier estimate of the distribution of the response. We show how the proposed regression quantile estimators perform through analyses of Stanford heart transplant data and AIDS incubation data. We also investigate the effect of censoring on regression quantiles through simulation study.

중도절단된 생존함수의 신뢰구간 비교연구

  • Lee, Gyeong-Hwa;Lee, Jae-Won
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.251-255
    • /
    • 2005
  • 중도절단된 자료와 표본수가 적은 자료를 가지는 생존분석에서 생존율을 추정하거나 두 집단의 생존율을 비교할 때 정규분포 근사를 가정한 신뢰구간을 이용하는 데는 많은 어려움이 생긴다. 생존함수의 신뢰구간에 대한 중도절단을, 표본의 크기에 따른 다양한 상황의 모의실험을 통하여 Kaplan-Meier, Nelson, 적률 추정량 그리고 cox model의 ${\beta}$을 가지고 붓스트랩을 이용한 신뢰구간과 비모수 신뢰구간, 우도비 신뢰구간의 실제 포함 확률을 비교해보고자 한다.

  • PDF