• Title/Summary/Keyword: Kantorovich $Sz{\acute{a}}sz$ operators

Search Result 4, Processing Time 0.016 seconds

ON STANCU TYPE GENERALIZATION OF (p, q)-SZÁSZ-MIRAKYAN KANTOROVICH TYPE OPERATORS

  • MISHRA, VISHNU NARAYAN;DEVDHARA, ANKITA R
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.285-299
    • /
    • 2018
  • In this article, we present the Stancu generalization of (p, q)-$Sz{\acute{a}}sz$-Mirakyan Kantorovich type linear positive operators. Using Korovkin's result, approximation properties are investigated. First, we evaluate moments and direct results. By choosing p and q, the convergence rate have been estimated for better approximation. For the particular case ${\alpha}=0$, ${\beta}=0$ we obtain results for (p, q)-$Sz{\acute{a}}sz$-Mirakyan Kantorovich type operators.

ON KANTOROVICH FORM OF GENERALIZED SZÁSZ-TYPE OPERATORS USING CHARLIER POLYNOMIALS

  • Wafi, Abdul;Rao, Nadeem;Deepmala, Deepmala
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.99-116
    • /
    • 2017
  • The aim of this article is to introduce a new form of Kantorovich $Sz{\acute{a}}sz$-type operators involving Charlier polynomials. In this manuscript, we discuss the rate of convergence, better error estimates. Further, we investigate order of approximation in the sense of local approximation results with the help of Ditzian-Totik modulus of smoothness, second order modulus of continuity, Peetre's K-functional and Lipschitz class.

Szász-Kantorovich Type Operators Based on Charlier Polynomials

  • Kajla, Arun;Agrawal, Purshottam Narain
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.877-897
    • /
    • 2016
  • In the present article, we study some approximation properties of the Kantorovich type generalization of $Sz{\acute{a}}sz$ type operators involving Charlier polynomials introduced by S. Varma and F. Taşdelen (Math. Comput. Modelling, 56 (5-6) (2012) 108-112). First, we establish approximation in a Lipschitz type space, weighted approximation theorems and A-statistical convergence properties for these operators. Then, we obtain the rate of approximation of functions having derivatives of bounded variation.

DEGREE OF APPROXIMATION FOR BIVARIATE SZASZ-KANTOROVICH TYPE BASED ON BRENKE TYPE POLYNOMIALS

  • Begen, Selin;Ilarslan, H. Gul Ince
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.251-268
    • /
    • 2020
  • In this paper, we estimate the degree of approximation by means of the complete modulus of continuity, the partial modulus of continuity, the Lipschitz-type class and Petree's K-functional for the bivariate Szász-Kantorovich operators based on Brenke-type polynomials. Later, we construct Generalized Boolean Sum operators associated with combinations of the Szász-Kantorovich operators based on Brenke-type polynomials. In addition, we obtain the rate of convergence for the GBS operators with the help of the mixed modulus of continuity and the Lipschitz class of the Bögel continuous functions.