• Title/Summary/Keyword: KSLV-I

Search Result 159, Processing Time 0.02 seconds

Safety Management for KSLV-I, Naro (KSLV-I 나로호의 발사체 안전 관리)

  • Cho, Sang-Yeon;Shin, Myung-Ho;Oh, Seung-Hyup;Kim, Young-Mok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • KSLV-I, a.k.a. Naro is the 1st Korean satellite launch vehicle, which was launched at Naro space center by Korea Aerospace Research Institute (KARI) in AUG. 2009, and JUN. 2010. Although the missions of 1st and 2nd launch of KSLV-I - inject the space craft into the designated orbit - were not successful, safety of launch vehicle was accomplished through the cooperation with the Russian partner Khrunichev Space Research and Production Center (KhSC). Both parties co-developed the safety management program to ensure launch safety. In this paper, the analysis and contents of safety program are illustrated.

Development of the Gas Charging Simulator for Reaction Control System of KSLV-I (KSLV-I RCS 충전모사 시스템 개발)

  • Jeon, Sang-Woon;Jung, Seul;Kim, Ji-Hun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.122-126
    • /
    • 2009
  • KSLV(Korea Space Launch Vehicle)-I is designed as a launch vehicle to enter a 100 kg-class satellite to the LEO(Low-Earth Orbit). Attitude angles of the upper-stage, including roll, pitch and yaw are controlled by cold gas thruster system using nitrogen gas. To verify the flow rate of the gas charging system and to prepare a nitrogen gas charging scenario, the development of a gas charging simulator for RCS(Reaction Control System) is required. This paper describes the orifice design, development, and test of the gas charging simulator for RCS of KSLV-I.

  • PDF

Technical Safety Management for KSLV-I (KSLV-I의 기술적 안전 관리)

  • Cho, Sang-Yeon;Kim, Yong-Wook;Lee, Jeong-Ho;Shin, Myoung-Ho;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.682-685
    • /
    • 2010
  • KSLV-I is the 1st Korean satellite launch vehicle, which was launched at Naro space center by Korea Aerospace Research Institute (KARI) in AUG. 2009, and JUN. 2010. Although the missions of 1st and 2nd launch of KSLV-I were not successful, safety of launch vehicle was accomplished through the cooperation with the Russian partner Khrunichev Space Research and Production Center (KhSC). Both parties co-developed the technical safety management program to ensure launch safety. In this paper, the analysis and contents of safety program are illustrated.

  • PDF

Comparative Study of the Flight Test Data and the Prediction Results of PLF Temperature of KSLV-I Using CFD (전산유동해석 기법을 이용한 KSLV-I PLF 구조물 온도 해석 및 비행시험 자료 비교)

  • Kim, Young-Hoon;Ok, Ho-Nam;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • The temperature of the flight objects in high speed increases due to the aerodynamic heating. MINIVER and CFD approach are used to predict the aerodynamic heating conditions of KSLV-I. MINIVER is based on the empirical method. And the CFD approach predicts the aerodynamic heating conditions after the analysis of the surface temperature and the surface heat flux directly. In this study, the aerodynamic heating conditions using CFD approach are considered. The PLF temperature for these aerodynamic heating conditions is compared with the flight test data of KSLV-I.

FRONT-END TELEMETRY DATA ACQUISITION UNIT FOR KSLV-I UPPER STAGE

  • Jung Hae-Seung;Kim Joonyun;Lee Jae-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.337-340
    • /
    • 2004
  • Upper stage telemetry system of KSLV- I (Korea Space Launch Vehicle I) is composed of MDU (Master Data Unit), RDU (Remote Data Unit), SRU (Shock Recorder Unit) and Transmitter. RDU is the front-end telemetry data acquisition unit which gathers analog/discrete signals from various sensors and other units, and transmits the processed data to MDU via MIL-STD-I553B data bus. In order to acquire useful data from analog signal, signal conditioning circuits, such as anti-aliasing or amplifying, should be implemented. For this purpose, SCM (Signal Conditioning Module) had been developed. This paper describes hardware structure of SCM and analog signal conditioning circuits for various sensors. Also, sampling time scheme for different sampling rates were designed and tested.

  • PDF

Development of Test Equipment for KSLV-I Upper Stage (KSLV-I 상단부 시험장비(UTE) 설계 및 개발)

  • Kim, Kwang-Soo;Lee, Soo-Jin;Chung, Eui-Seung;Park, Jeong-Joo
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.171-179
    • /
    • 2007
  • The Test Equipment for the upper stage of KSLV-I has following functions via umbilical cable interface; external power supply, command output such as discrete and analog, data acquisition, CS-I interface simulation for first stage of KSLV-I and RS-422 serial communication for PDU. The main purpose of UTE is the experiment or function verification of system-level upper stage. To realize this system, we used PXI control system. The UTE is consisted of the PXI control system, power supply, terminal block, internal harness, connector panel and so on. The software functions of UTE are classified by four blocks. These are Discrete/Analog I/O control, PDU RS-422 serial communication control, power supply GPIB control and UTE remote control. In this paper, we will describe the design on the hardware and software of UTE.

  • PDF

DESIGN AND IMPLEMENTATION OF TELEMETRY SYSTEM INTERFACE FOR KSLV-I

  • Kim Joonyun;Kim Bo-Gwan
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.274-277
    • /
    • 2004
  • KSLV (Korea Space Launch Vehicle)-I telemetry system will be composed of two telemetry streams: a lower stage telemetry stream and an upper stage telemetry stream. In this paper, the authors present design, implementation and test results of the upper stage telemetry interface for KSLV-I. The telemetry system currently is in the stage of the prototype model development, and its engineering model and flight model will be developed in the near future.

  • PDF

Thrust Measurement System for High Altitude Simulation Test of the KSLV-I Kick Motor (KSLV-I 킥모터 개발을 위한 고공환경모사시험용 추력측정장치)

  • Lee, Jung-Ho;Cho, Sang-Yeon;Cho, Kie-Joo;Jung, Dong-Ho;Lee, Han-Ju;Oh, Seung-Hyub;Yoon, Kyung-Youl;Kim, Dong-Cheol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.428-431
    • /
    • 2008
  • Korea Aerospace Research Institute(KARI) is achieving the Korea Space Launch Vehicle(KSLV) program according to National Space Technology Development Program. KSLV-I will be composed to liquid propellant(first stage) and solid propellant(second stage) propulsion system. The propulsion system of KSLV-I second stage is solid kick motor with high expansion ratio and its starting altitude is 300km high. In order to verify the performance of upper stage propulsion system designed to operate in the upper atmosphere, test facility which can simulate high altitude is needed. High Altitude Simulation Test Facility is composed to Thrust Measurement System, Control & Measurement system, Diffuser, SKID for cooling water supply to diffuser, CCTV, fire protection system and so on. This paper introduces TMS adapted to High Altitude Simulation Test for KSLV-I Kick Motor Development and results of hot firing test for its performance verification.

  • PDF

The Result in Quality Management Activity of Propellant and Compressed Gases during the Operation of KSLV-I (KSLV-I 운용에서의 추진제 및 고압가스 품질관리 활동 결과)

  • Jung, Young-Suk;Kang, Sun-Il;Oh, Seung-Hyub;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • This paper is about the results in Qualification Management activity performed between the Autonomous Test(AT) season(August. 2008) of Launch Complex and the 2nd flight test season(June. 10, 2010) of KSLV-I. All cryogenic fluids(LOX, $LN_2$) and compressed gases(Air, $GN_2$, GHe) were qualified by qualification management activity during AT(Autonmous Test), QT(Qualification Test) season for LP(Launch Pad) and LVAB(Launch Vehicle Assembly Building) and FT(Flight Test) season of KLSV-I. As the results, total 428 times of check analysis and 111 times of full analysis were performed.

KSLV-I Plume Analysis Part III for the launch pad flame deflector performance (발사대 화염유도로 해석을 위한 KSLV-I 플룸 해석 3)

  • Hwang, Do-Keun;Nam, Jung-Won;Kim, Seong-Lyong;Kang, Sun-Il;Kim, Dae-Rae;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.375-378
    • /
    • 2010
  • Hot and high speed plume exhausted during KSLV-I flight test is cooled down by an amount of water ejected from 'gas deflector cooling system' of launch complex to reduce the effects on the launch vehicle and launch complex. In this study, simplified axisymmetric computational calculation with 2-phase is carried out to analysis the water injection effects on flow field.

  • PDF