• Title/Summary/Keyword: KOMPSAT-2 Satellite

Search Result 487, Processing Time 0.029 seconds

Current Status of Application of KOMPSAT Series (최근 다목적실용위성 시리즈 활용 현황)

  • Lee, Kwang-Jae;Oh, Kwan-Young;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1485-1492
    • /
    • 2020
  • It has been more than 20 years since the launch of KOMPSAT-1, and so far, a total of 5 satellites have been successfully launched. Until now, KOMPSAT has been used in various fields, including the production of various thematic maps, land change, environmental analysis, and marine monitoring. Many researchers have conducted research to process, analyze, and utilize KOMPSAT images. According to the national space development plan, the KOMPSAT series will be continuously developed to meet the demand for satellite images at the national level. If the ultimate purpose of satellite development is to utilize acquired images, systematic research to effectively utilize the developed satellites should be followed. This special issue introduces the recently conducted research on the use of KOMPSAT images.

KOMPSAT-2 Geometric Cal/Val Overview and Preliminary Result Analysis (다목적실용위성2호 기하검보정 및 초기결과 분석)

  • Seo, Doo-Chun;Lee, Dong-Han;Song, Jeong-Heon;Park, Su-Young;Lim, Hyo-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.145-148
    • /
    • 2007
  • The Korea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and The main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. KOMPSAT-2 measure the position, velocity and attitude data of satellite using by star sensor, gyro sensor, and GPS sensor. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image, both geometric Cal/Val overview.

  • PDF

On Board Computer Design, Analysis and Test for KOMPSAT2 (KOMPSAT2 탑재컴퓨터 설계, 성능 분석 및 시험)

  • 조영호;심재선
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.571-577
    • /
    • 2004
  • In this paper, we describe the structure, function and the design factor of common module for KOMPSAT-2 OBC, which will be launched in 2005. By analysing OBC's performance, we can know the throughput and how much improve performance than KOMPSAT-l. it is used in the satellite mission design by system engineer. We verify the usefulness of common module for KOMPSAT-2 OBC through environment test.

KOMPSAT-1 Satellite Orbit Control using GPS Data

  • Lee, Jin-Ho;Baek, Myuog-Jin;Koo, Ja-Chun;Yong, Ki-Lyuk;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.43-49
    • /
    • 2000
  • The Global Positioning System (GPS) is becoming more attractive navigation means for LEO (Low Earth Orbit) spacecraft due to the data accuracy and convenience for utilization. The anomalies such as serious variations of Dilution-Of-Precision (DOP), loss of infrequent 3-dimensional position fix, and deterioration of instantaneous accuracy of position and velocity data could be observed, which have not been appeared during the ground testing. It may cause lots of difficulty for the processing of the orbit control algorithm using the GPS data. In this paper, the characteristics of the GPS data were analyzed according to the configuration of GPS receiver such as position fix algorithm and mask angle using GPS navigation data obtained from the first Korea Multi-Purpose Satellite (KOMPSAT). The problem in orbit tracking using GPS data, including the infrequent deterioration of the accuracy, and an efficient algorithm for its countermeasures has also been introduced. The reliability and efficiency of the modified algorithm were verified by analyzing the effect of the results between algorithm simulation using KOMPSAT flight data and ground simulator.

  • PDF

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

Geometric Accuracy of KOMPSAT-2 PAN Data According to Sensor Modeling (센서모델링 특성에 따른 KOMPSAT-2 PAN 영상의 정확도)

  • Seo, Doo-Chun;Yang, Ji-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 2009
  • In order to help general users to analyze the KOMPSAT-2 data, an application of sensor modeling to commercial software was explained in this document. The sensor modeling is a basic step to extract the quantity and quality information from KOMPSAT-2 data. First, we introduced the contents and type of ancillary data offered with KOMPSAT-2 PAN image data, and explained how to use it with commercial software. And then, we applied the polynomial-base and refine RFM sensor modeling with ground control points. In the polynomial-base sensor modeling, the accuracy which is average RMSE of check points is highest when the satellite position was calculated by type of 1st order function and the satellite attitude was calculated by type of 1st order function for (Y axis), (Z axis) or constant for (X axis), (Y axis), (Z axis) in perspective center position and satellite attitude parameters. As a result of refine RFM sensor modeling, the accuracy is less than 1 pixel when we applied affine model..

  • PDF

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

ITU Policy Trend of Japan, Russia and China about Satellite Network Frequency and Orbit (위성망 주파수 및 궤도에 대한 일본, 러시아 및 중국의 ITU 정책 동향)

  • Kim, Young-Wook;Chung, Dae-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 2009
  • Insufficient problem about resource of satellite network frequency and orbit was seriously issued, because commercialization of a satellite has been successfully achieved since 1980s. Therefore, each countries execute an advantageous policy to them for guarantying and protecting satellite network resource and perform study for preoccupying new satellite network resource. Understanding and insight of policy about occupying satellite network resource of world each countries are landmark of satellite network task. In this paper, policies of Japan, Russia and China located around Korea are especially described. Also, in this paper, the administration organization of Japan, Russia and China which are to manage satellite network is described. The KARI(Korea Aerospace Research Institute) secured satellite network frequency and orbit of the KOMPSAT(KOrea Multi Purpose SATellite)-1 and the KOMPSAT-2 and is also going to register satellite network of the KOMPSAT-3 and the KOMPSAT-5. When satellite network coordination with nearby three countries will be needed, understanding of political policy and organization let the Korea acquire coordination agreement of the other administration.

  • PDF

QUICK-LOOK TEST OF KOMPSAT-2 FOR IMAGE CHAIN VERIFICATION

  • Lee Eung-Shik;Jung Dae-Jun;Lee Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.509-511
    • /
    • 2005
  • KOMPSAT -2 equipped with an optical telescope(MSC) will be launched in this year. It can take images of the earth with push-broom scanning at altitude 685Km. Its resolution is 1m in panchromatic channel with a swath width of 15 km After the MSC is tested and the performance is measured at instrument level, it is installed on satellite. The image passes through the electro-optical system, compression and storage unit and fmally downlink sub-systems. This integration procedure necessitates the functional test of all subsystems participating in the image chain. The objective of functional test at satellite level(Quick Look test) is to check the functionality of image chain by real target image. Collimated moving image is input to the EOS in order to simulate the operational environments as if KOMPSAT -2 is being operated in orbit. The image chain from EOS to data downlink subsystem will be verified through Quick Look test. This paper explains the Quick Look test of KOMPSAT -2 and compares the taken images with collimated input ones.

  • PDF

Carbon Storage Estimation of Urban Area Using KOMPSAT-2 Imagery (KOMPSAT-2호 위성영상을 이용한 도시지역 탄소저장량 추정)

  • Kim, Ki-Tae;Cho, Jin-Woo;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.49-54
    • /
    • 2011
  • Recently Korean government announced the vision for low-carbon green growth. Quantifying of the carbon storage, distribution, and change of urban trees is vital to understanding the role of vegetation in the urban environment. In the city planning the carbon storage estimation has become an important factor. In this paper, KOMPSAT-2 satellite imagery was used to develop a method to predict the urban forest carbon storage from the Normalized Difference Vegetation Index (NDVI) computed from a time sequence image data. The total carbon storage change by trees in the 6 administrative zonings of Jinju was estimated using the image data in 2007 and 2009. Therefore the paper presents a method based on the satellite images, which can estimate the spread of urban tree and carbon storage variation using KOMPSAT-2.