Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.6.2.4

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization  

Ahn, Ho-yong (Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration)
Na, Sang-il (Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration)
Park, Chan-won (Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration)
Hong, Suk-young (Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration)
So, Kyu-ho (Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Kyung-do (Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Korean Journal of Remote Sensing / v.36, no.6_2, 2020 , pp. 1523-1535 More about this Journal
Abstract
In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.
Keywords
Cross Calibration; KOMPSAT-3; Lnadsat-8; SBAF; PICS;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Ministry of Agriculture, Food and Rural Affairs, 2016. Agriculture, Food and Rural Affairs Statistics Yearbook 2016, Director-General for Policy Planning Bureau, Sejong, KOR.
2 Mishra, N., M. O. Haque, L. Leigh, D. Aaron, D. Helder, and B. Markham, 2014. Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+), Remote Sensing, 6(12): 12619-12638.   DOI
3 Na, S. I., C. W. Park, Y. K. Cheong, C. S. Kang, I. B. Choi, and K. D. Lee, 2016. Selection of optimal vegetation indices for estimation of barley & wheat growth based on remote sensing - An application of unmanned aerial vehicle and field investigation data - Korean Journal of Remote Sensing, 32(5): 483-497 (in Korean with English abstract).   DOI
4 Pagnutti, M., R. E. Ryan, M. Kelly, K. Holekamp, V. Zanoni, K. Thome, and S. Schiller, 2003. Radiometric characterization of IKONOS multispectral imagery, Remote Sensing of Environment, 88(1-2): 53-68.   DOI
5 Seo, D. C. and H. S. Kim, 2011. Characterizing Overlap Area of KOMPSAT-3, Aerospace Engineering and Technology, 10(2): 154-162 (in Korean with English abstract).
6 Shao, Y., R. S. Lunetta, J. Ediriwickrema, and J. Iiames, 2010. Mapping cropland and major crop types across the Great Lakes Basin using MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI(Normalized difference vegetation index) data, Photogrammetric Engineering and Remote Sensing, 76(1): 73-84.   DOI
7 Teillet, P. M., K. Staenz, and D. J. Williams, 1997. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions, Remote Sensing of Enviroment, 61: 139-149.   DOI
8 Fan, X. and U. Liu, 2016. A global study of NDVI (Normalized difference vegetation index) difference among moderate-resolution satellite sensors, ISPRS Journal of Photogrammetry and Remote Sensing, 121: 177-191.   DOI
9 Conrad, C., R. R. Colditz, S. Dech, D. Klein, and P. L. Vlek, 2011. Temporal segmentation of MODIS (Moderate Resolution Imaging Spectroradiometer) time series for improving crop classification in Central Asian irrigation systems, International Journal of Remote Sensing, 32(23): 8763-8778.   DOI
10 De Vries, C., T. Danaher, R. Denham, P. Scarth, and S. Phinn, 2007. An operational radiometric calibration procedure for the Landsat sensors based on pseudo-invariant target sites, Remote Sensing of Environment, 107(3): 414-429.   DOI
11 Folkman, M. A., J. Pearlman, B. L. Liao, and P. J. Jarecke, 2001. EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration, Proc. of Hyperspectral Remote Sensing of the Land and Atmosphere, SPIE, Sendai, JPN, Oct. 9-12, pp. 40-51.
12 Hong, S. Y., J. Hur, J. B. Ahn, J. M. Lee, B. K. Min, C. K. Lee, Y. Kim, K. D. Lee, S. H. Kim, G. Y Kim, and K. M. Shim, 2012. Estimating rice yield using MODIS(Moderate Resolution Imaging Spectroradiometer) NDVI(Normalized difference vegetation index) and meteorological data in Korea, Korean Journal of Remote Sensing, 28(5): 509-520 (in Korean with English abstract).   DOI
13 Howard, D. M. and B. K. Wylie, 2014. Annual crop type classification of the US Great Plains for 2000 to 2011, Photogrammetric Engineering and Remote Sensing, 80(6): 537-549.   DOI
14 Irons, J. R., J. L. Dwyer, and J. A. Barsi, 2012. The next Landsat satellite: The Landsat Data Continuity Mission, Remote Sensing of Environment, 122: 11-21.   DOI
15 Lee, K. D., Y. E. Lee, C. W. Park, and S. I. Na, 2016. A comparative study of image classification method to classify onion and garlic using unmanned aerial vehicle(UAV) imagery, Korean Journal of Soil Science and Fertilizer, 49(6): 743-750 (in Korean with English abstract).   DOI
16 Jeong, S. J., H. S. Yun, D. U. Kim, H. J. Kim, C. S. Ryu, and Y. Kwon, 2016. Development of crop image segmentation technique for monitoring the growth status of garlic (Allium sativum) in UAV(Unmanned Aerial Vehicle System) remote sensing, Proc. of 2016 Korean Society for Agricultural Machinery, Cheonan, KOR, Nov. 2-3, vol. 21, p. 58.
17 Jeong, H. K., J. H. Sung, and H. J. Lee, 2020. Analysis of Social Demand for Countermeasures in Response to Extreme Weather Events in Korean Agricultural Sector, Journal of Climate Change Research, 11(4): 235-246 (in Korean with English abstract).   DOI
18 Jin, C., H. Ahn, D. Seo, and C. Choi, 2020. Radiometric Calibration and Uncertainty Analysis of KOMPSAT3A Using the Reflectance-Based Method, Sensors, 20(9): 2564.   DOI
19 Galvao, L. S., I. Vitorello, and R. Almeida, 1999. Effects of band positioning and bandwidth NDVI (Normalized difference vegetation index) measurements of tropical savannas, Remote Sensing of Enviroment, 67: 181-193.   DOI
20 Ahn, H. Y., S. I. NA, C. W. Park, S. Y. Hong, K. H. So, and K. D. Lee, 2018. Feasibility Assessment of Spectral Band Adjustment Factor of KOMPSAT-3 for Agriculture Remote Sensing, Korean Journal of Remote Sensing, 34(6-3): 1369-1382 (in Korean with English abstract).   DOI
21 Beyer, F., J. T. Jarmer, B. Siegmann, and P. Fischer, 2015. Improved crop classification using multitemporal RapidEye data, Proc. of 2015 8thInternational Workshop on the Analysis of Multitemporal Remote Sensing Images, Annecy, FRA, Jul. 22-24, pp. 1-4.
22 Yeom, J. H. and Y. I. Kim, 2014. Automatic extraction of the land readjustment paddy for high-level land cover classification, Journal of Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(5): 443-450 (in Korean with English abstract).   DOI
23 Chander, G., B. L. Markham, and D. L. Helder, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment, 113: 893-903.   DOI
24 Chander, G., N. Mishra, D. L. Helder, D. Aaron, T. Choi, A. Angal, and X. Xiong, 2010. Use of EO-1 Hyperion data to calculate spectral band adjustment factors (SBAF) between The L7 ETM+ and TERRA MODIS Sensors, Proc. of IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, Jul. 25-30, pp. 1667-1670.
25 Chander, G., N. Mishra, D. L. Helder, D. B. Aaron, A. Angal, T. Y. Choi, X. Xiong, and D. R. Doelling, 2013. Applications of Spectral Band Adjustment Factors (SBAF) for Cross-Calibration, IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1267-1281.   DOI
26 Yoon, S. H., J. Y. Choi, S. H. Yoo, and M. W. Jang, 2007. An uncertainty analysis of topographical factors in paddy field classification using a timeseries MODIS, Journal of Korean Society of Agricultural Engineers, 49(5): 67-77 (in Korean with English abstract).   DOI
27 Zhang, L., S. Hu, H. Yang, T. Wu, Q. Tong, and F. Zhang, 2014. The Effects of Solar Irradiance Spectra on Calculation of Narrow Band Top-ofAtmosphere Reflectance, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1): 49-58.   DOI