Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.6.2.1

Current Status of Application of KOMPSAT Series  

Lee, Kwang-Jae (Satellite Application Division, Korea Aerospace Research Institute)
Oh, Kwan-Young (Satellite Application Division, Korea Aerospace Research Institute)
Lee, Won-Jin (Environmental Satellite Center, National Institute of Environmental Research)
Publication Information
Korean Journal of Remote Sensing / v.36, no.6_2, 2020 , pp. 1485-1492 More about this Journal
Abstract
It has been more than 20 years since the launch of KOMPSAT-1, and so far, a total of 5 satellites have been successfully launched. Until now, KOMPSAT has been used in various fields, including the production of various thematic maps, land change, environmental analysis, and marine monitoring. Many researchers have conducted research to process, analyze, and utilize KOMPSAT images. According to the national space development plan, the KOMPSAT series will be continuously developed to meet the demand for satellite images at the national level. If the ultimate purpose of satellite development is to utilize acquired images, systematic research to effectively utilize the developed satellites should be followed. This special issue introduces the recently conducted research on the use of KOMPSAT images.
Keywords
KOMPSAT; Calibration & Validation; Surface Reflectance; Deep Learning; Classification; Change Detection; DSM;
Citations & Related Records
Times Cited By KSCI : 50  (Citation Analysis)
연도 인용수 순위
1 Oh, K. Y., J. I. Hwang, W. S. Yoo, and K. J. Lee, 2020. Performance Evaluation of KOMPSAT-3 Satellite DSM in Overseas Testbed Area, Korean Journal of Remote Sensing, 36(6-2): 1615-1627 (in Korean with English abstract).   DOI
2 Oh, K. Y., H. S. Jung, K. J. Lee, and H. S. Lee, 2014. A Method for Quantitative Quality Assessment of Mosaic Imagery, Korean Journal of Remote Sensing, 30(1): 1-12 (in Korean with English abstract).   DOI
3 Oliveira, M., A. D. Sappa, and V. Santos, 2015. A probabilistic approach for color correction in image mosaicking applications, IEEE Transaction on Image Proceeded, 24: 508-523.   DOI
4 Saunier, S., P. Goryl, G. Chander, R. Santer, M. Bouvet, B. Collet, A. Mambimba, and S. K. Aksakal, 2010. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors, IEEE Transactions on Geoscience and Remote Sensing, 48(10): 3855-3866.   DOI
5 Seo, D. C., H. H. Kim, J. H. Jung, and D. H. Lee, 2020. Characteristics of KOMPSAT-3A Key Image Quality Parameters During Normal Operation Phase, Korean Journal of Remote Sensing, 36(6-2): 1493-1507 (in Korean with English abstract).   DOI
6 Song, A., J. Choi, and Y. Kim, 2019. Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 37(3): 199-208 (in Korean with English abstract).   DOI
7 Song, C., W. Wahyu, J. Jung, S. Hong, D. Kim, and J. Kang, 2020. Urban Change Detection for High-resolution Satellite Images using U-Net Based on SPADE, Korean Journal of Remote Sensing, 36(6-2): 1579-1590 (in Korean with English abstract).   DOI
8 Rana, V. K. and T. M. V. Suryanarayana, 2020. Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands, Remote Sensing Applications: Society and Environment, 19: 100351.   DOI
9 Pan, J., M. Wang, X. Cao, S. Chen, and F. Hu, 2016. A multi-resolution blending considering changed regions for ortho image mosaicking, Remote Sensing, 8: 842-861.   DOI
10 Park, C. H., J. Yu., J. Kim, and D. Y. Yang, 2019. Monitoring Variation of Tidal Channels associated with Shihwa Reclamation Project using Remote Sensing Approaches, Economic and Environmental Geology, 52(4): 299-312 (in Korean with English abstract).   DOI
11 Wahyu, W., J. Lee, and D. Sim, 2020. Change Detection on Multi-Spectral Images Based on Feature-level U-Net, IEEE Access, 8: 12279-12289.   DOI
12 Kim, H., J. Jung, D. Lee, and D. Seo, 2020. A Study on the Seamline Estimation for Mosaicking of KOMPSAT-3 Images, Korean Journal of Remote Sensing, 36(6-2): 1537-1565 (in Korean with English abstract).   DOI
13 Kim, K. and K. Lee, 2020. Validation of Surface Reflectance Product of KOMPSAT-3A Image Data: Application of RadCalNet Baotou (BTCN) Data, Korean Journal of Remote Sensing, 36(6-2): 1509-1521 (in Korean with English abstract).   DOI
14 Kim, Y., 2020. Derivation of Radiometric Calibration Coefficients for KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model, Korean Journal of Remote Sensing, 36(6-2): 1629-1634 (in Korean with English abstract).   DOI
15 Lee, K., 2019. Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing, Korean Journal of Remote Sensing, 35(6-3): 1299-1312 (in Korean with English abstract).   DOI
16 Kuhn, C., A. M. Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, 2019. Performance of Landsat-8 and Sentinel-2 Surface Reflectance Products for River Remote Sensing Retrievals of Chlorophylla and Turbidity, Remote Sensing of Environment, 224: 104-118.   DOI
17 Lee, K. and J. Yum, 2019. A Review on Atmospheric Correction Technique Using Satellite Remote Sensing, Korean Journal of Remote Sensing, 35(6-1): 1011-1030 (in Korean with English abstract).   DOI
18 Lee, K. and K. Kim, 2019. An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation, Korean Journal of Remote Sensing, 35(6-4): 1327-1339 (in Korean with English abstract).   DOI
19 Lee, S. and M. Lee, 2020. A Study on Deep Learning Optimization by Land Cover Classification Item Using Satellite Imagery, Korean Journal of Remote Sensing, 36(6-2): 1591-1604 (in Korean with English abstract).   DOI
20 Lee, S. J. and Y. W. Lee, 2020. Detection of WildfireDamaged Areas Using Kompsat-3 Image: A Case of the 2019 Unbong Mountain Fire in Busan, South Korea, Korean Journal of Remote Sensing, 36(1): 29-39 (in Korean with English abstract).   DOI
21 Lee, S. M. and J. C. Jeong, 2020. Accuracy Assessment of Unsupervised Change Detection Using Automated Threshold Selection Algorithms and KOMPSAT3A, Korean Journal of Remote Sensing, 36(5-2): 975-988 (in Korean with English abstract).   DOI
22 Lee, Y. S., S. H. Park, H. S. Jung, and W. K. Baek, 2018. Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Artificial Neural Network, Korean Journal of Remote Sensing, 34(6-3): 1399-1414 (in Korean with English abstract).   DOI
23 Ahn, H. Y., S. I. Na, C. W. Park, S. Y. Hong, K. H. So, and K. D. Lee, 2020. Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization Calibration of KOMPSAT for Agricultural Application Improvement, Korean Journal of Remote Sensing, 36(6-2): 1523-1535 (in Korean with English abstract).   DOI
24 Li, C. R., L. L. Tang, L. L. Ma, Y. S. Zhou, C. X. Gao, N. Wang, X. H. Li, X. H. Wang, and X. H. Zhu, 2015. A comprehensive calibration and validation site for information remote sensing, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7): 1233-2015.
25 Li, X., R. Feng, X. Guan, H. Shen, and L. Zhang, 2019. Remote Sensing Image Mosaicking: Achievements and Challenges, IEEE Geoscience and Remote Sensing Magazine, 7: 8-22.
26 Ahn, H. Y., K. Y. Kim, K. D. Lee, C. W. Park, K. H. So, and S. I. Na, 2018. Feasibility Assessment of Spectral Band Adjustment Factor of KOMPSAT3 for Agriculture Remote Sensing, Korean Journal of Remote Sensing, 34(6): 1369-1382 (in Korean with English abstract).   DOI
27 Badrinarayanan, V., K. Alex, and C. Roberto, 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495.   DOI
28 Claverie, M., J. Ju, J. G. Masek, J. L. Dungan, E. F. Vermote, J. C. Roger, S. V. Skakun, and C. Justice, 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sensing of Environment, 219: 145-161.   DOI
29 Crespi, M. and L. D. Vendictis, 2009. A procedure for high resolution satellite imagery quality assessment, Sensors, 9(5): 3289-3313.   DOI
30 Dwyer, J. L., D. P. Roy, B. Sauer, C. B. Jenkerson, H. K. Zhang, and L. Lymburner, 2018. Analysis Ready Data: Enabling Analysis of the Landsat Archive, Remote Sensing, 10(9): 1363.
31 Kang, H., 2020. Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching, Korean Journal of Remote Sensing, 36(4): 545-555.   DOI
32 Hejazifar, H. and H. Khotanlou, 2018. Fast and robust seam estimation to seamless image stitching, Signal, Image and Video Proceeded, 12(5): 885-893.   DOI
33 Jang, J. C., K. A. Park, D. Yang, and S. G. Lee, 2019. Improvement of KOMPSAT-5 Sea Surface Wind with Correction Equation Retrieval and Application of Backscattering Coefficient, Korean Journal of Remote Sensing, 35(6-4): 1373-1389 (in Korean with English abstract).   DOI
34 Jeong, Y., K. J. Lee, T. B. Chae, and J. Yu, 2020. Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea, Korean Journal of Remote Sensing, 36(6-2): 1605-1613 (in Korean with English abstract).   DOI
35 Jung, D., D. Jin, N. H. Seong, K. S. Lee, M. Seo, S. Choi, S. Sim, K. S. Han, and B. R. Kim, 2020. Sensitivity Analysis of Surface Reflectance Retrieved from 6SV LUT for Each Channel of KOMPSAT-3/3A, Korean Journal of Remote Sensing, 36(5-1): 785-791 (in Korean with English abstract).   DOI
36 Kadavi, P. R. and C. W. Lee, 2018. Land cover classification analysis of volcanic island in Aleutian Arc using an artificial neural network (ANN) and a support vector machine (SVM) from Landsat imagery, Geosciences Journal, 22(4): 653-665.   DOI
37 Kavzoglu, T. and I. Colkesen, 2009. A kernel functions analysis for support vector machines for land cover classification, International Journal of Applied Earth Observation and Geoinformation, 11(5): 352-359.   DOI
38 Gadallah, F. L., F. Csillag, and E. J. M. Smith, 2000. Destriping multisensor imagery with moment matching, International Journal of Remote Sensing, 21: 2505-2511.   DOI
39 Kim, D., T. K. Lee, and S. W. Kim, 2020. Ship Detection Based on KOMPSAT-5 SLC Image and AIS Data, Korean Journal of Remote Sensing, 36(2-2): 365-377 (in Korean with English abstract).   DOI
40 Kemker, R., C. Salvaggio, and C. Kanan, 2018. Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning, ISPRS Journal of Photogrammetry and Remote Sensing, 145: 60-77.   DOI
41 Nur, A. S., S. Park, K. J. Lee, J. Y. Moon, and C. W. Lee, 2020. Mapping of Post-Wildfire Burned Area using KOMPSAT-3A and Sentinel-2 Imagery: The Case of Sokcho Wildfire, Korea, Korean Journal of Remote Sensing, 36(6-2): 1551-1565 (in Korean with English abstract).   DOI
42 Woo, H. J., J. U. Choi, S. M. An, S. J. Kwon, and B. J. Koo, 2006. Changes of Sedimentary Environment in the Saemangeum Tidal Flat on the West Coast of Korea, Ocean and Polar Research, 28(4): 361-368 (in Korean with English abstract).   DOI
43 Youn, H. and J. Jeo, 2020. KOMPSAT-3A Urban Classification using Machine Learning Algorithm, Focusing on Yang-jae in Seoul, Korean Journal of Remote Sensing, 36(6-2): 1567-1577 (in Korean with English abstract).   DOI
44 Zhang, C., S. Wei, S. Ji, and M. Lu, 2019. Detecting large-scale urban land cover changes from very high resolution remote sensing images using cnn-based classification, ISPRS International Journal of Geo-Information, 8(4): 189.   DOI
45 Zhang, P., Y. Ke, Z. Zhang, M. Wang, P. Li, and S. Zhang, 2018. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery, Sensors, 18(11): 3717.   DOI
46 Zheng, X. W., Q. Huang, J. J. Wang, T. Y. Wang, and G. Zhang, 2018. Geometric accuracy evaluation of high-resolution satellite images based on Xianning test field, Sensors, 18(7): 2121-2132.   DOI
47 Zhu, Z., 2019. Science of Landsat Analysis Ready Data, Remote Sensing, 11(18): 2166.   DOI
48 Liu, Y., B. Zhang, L. Wang, and N. Wang, 2013. A self-trained semisupervised SVM approach to the remote sensing land cover classification, Computers and Geosciences, 59: 98-107.   DOI