• Title/Summary/Keyword: KOH activation

Search Result 216, Processing Time 0.037 seconds

Factors Influencing Knowledge Sharing Activities and Community Activation Efforts in Social Q&A Community : Focused on ZHI HU (소셜 Q&A 커뮤니티에서 지식공유 활동 및 커뮤니티 활성화 노력에 대한 영향요인 : 즈후(知乎)를 중심으로)

  • Bu, Shaoyang;Koh, Joon
    • Journal of Information Technology Services
    • /
    • v.18 no.3
    • /
    • pp.95-115
    • /
    • 2019
  • In recent years, social media that has emerged with the development of network technology has changed the channels of information dissemination. The social Q&A community is a platform for knowledge-sharing activities in a question-and-answer manner based on Web 2.0. In knowledge-sharing activities, valuable new knowledge continues to be produced and will surely bring great benefits to individuals or businesses. In the social Q&A community, the user's subjective factors play a crucial role in influencing the user's continued use and participation in knowledge-sharing activities. In order for users to actively participate in knowledge-sharing activities in the community, it needs to grasp their subjective ideas. This study explores the issue of sharing knowledge by users of the social Q&A community "Zhihu", or how to drive community revitalization efforts from these. The three factors self-efficacy, self-development motivation, and social comparison tendencies were derived, and identify their relationship with knowledge-sharing activities and community-boosting efforts through empirical analysis. In addition, the influence of knowledge acquisition on knowledge provision was investigated through sense of reciprocity. Implications of the study findings and the future research directions were also discussed.

Synthesis of Activated Carbon from a Bio Waste (Flower of Shorea Robusta) Using Different Activating Agents and Its Application as Supercapacitor Electrode

  • Ghosh, Souvik;Samanta, Prakas;Murmu, Naresh Chandra;Kim, Nam Hoon;Kuila, Tapas
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • The activated carbon is a very good choice for using as supercapacitor electrode materials. Herein, the flower of Shorea robusta, a bio-waste material was successfully used to synthesize the activated carbons for application as supercapacitor electrode materials. The activated carbon was synthesized through chemical activation process followed by thermal treatment at 700℃ in presence of N2 atmosphere using KOH, ZnCl2 and H3PO4 as the activating agents. The physicochemical analyses demonstrate that the obtained activated carbons are graphitic in nature and the degree of disorder of the graphitic carbons is changed with the activating agents. The activated carbon obtained from Shorea robusta flower (ACSF-K) electrode shows the specific capacitance of ~610 F g-1 at 2 A g-1 current density, which is higher than ACSF-Z (560 F g-1) and ACSF-H (470 F g-1) electrode material under the identical current density. The synthesized graphitic carbons also demonstrated good rate capability and high electrochemical stability as supercapacitor electrode.

Human CD8+ T-Cell Populations That Express Natural Killer Receptors

  • June-Young Koh;Dong-Uk Kim;Bae-Hyeon Moon;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.8.1-8.13
    • /
    • 2023
  • CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.

Influence of Textural Structure by Heat-treatment on Electrochemical Properties of Pitch-based Activated Carbon Fiber (열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향)

  • Kim, Kyung Hoon;Park, Mi-Seon;Jung, Min-Jung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.598-603
    • /
    • 2015
  • In this study, electrochemical properties of pitch-based activated carbon fibers (ACFs) were investigated by different heat-treatment temperature of the pitch-based ACFs in order to improve the specific capacitance of electric double-layer capacitor (EDLC). The ACFs were prepared by different heat-treatment temperatures of 1050 and $1450^{\circ}C$, after activation with 4 M KOH at $800^{\circ}C$ using stabilized pitch fiber. The specific surface area of prepared ACFs increased from $828m^2/g$ to $987m^2/g$, also the micropore and mesopore volumes of prepared ACFs were increased. These results because pore was produced by desorbing oxygen and hydrogen elements within the ACFs, and pore size was increased by contraction ACFs by heat-treatment process. Because of the porous properties, the specific capacitance was increased from 73 F/g to 119 F/g using cyclic voltammetry with 1 M $H_2SO_4$ at scan rates of 5 mV/s.

Electrochemical Oxidation of Hydrogen at Palladium Electrode (팔라디움 전극에서의 전기화학적 수소산화반응)

  • Oh, M.H.;Paik, C.H.;Cho, B.W.;Yun, K.S.;Min, B.C.;Ju, J.B.;Sohn, T.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.45-54
    • /
    • 1996
  • Electrochemical oxidation of hydrogen on PdOx and Pd electrodes were investigated in aqueous 30% KOH solution at different temperatures and hydrogen concentrations(partial pressures). Anodic reaction by hydrogen on PdOx electrode was mainly due to the oxidation of adsorbed hydrogen at -0.8V~-0.5V(vs. Hg/HgO). For Pd electrode, the anodic reaction was participated by the adsorbed hydrogen on surface, as well as by the metal hydride formed from direct reaction between Pd and hydrogen at -0.5V~0.0V(vs. Hg/HgO). With the increase of hydrogen concentration the charge transfer resistance decreased and the exchange current increased. The transfer coefficient of PdOx and Pd electrodes were found to be 0.78 and 0.72 respectively, which shows the superior reactivity of Pd electrode. The activation energies of PdOx and Pd electrodes decreased with the increase of overpotential and were found to be 23.9~20.3 kJ/mole and 7.2~3.0kJ/mole, respectively.

  • PDF

The Characteristics of Hydrogen Production According to Electrode Materials in Alkaline Water Electrolysis (알칼리 수전해에서 전극재질에 따른 수소생산 특성)

  • Moon, Kwangseok;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.34-39
    • /
    • 2015
  • This study confirmed the characteristics of hydrogen production according to electrode materials by producing non-diaphragm alkaline water electroanalyzer that can be controlled at medium temperature to produce hydrogen. As a result of the electrochemical characteristics by electrode material ($IrO_2/Ti$, $RuO_2/Ti$, Ti), the highest efficiency was found in $RuO_2/Ti$, as a result of hydrogen production experiment by electrolyte concentration, electrolyte concentration has a tendency to be proportional to hydrogen production and the condition of 30% KOH showed the highest hydrogen production as $118.9m^3/m^3/day$. In the experiment that confirmed hydrogen production according to electrode materials, in case of combination of anode ($IrO^2/Ti$) and cathode ($RuO^2/Ti$), it was $157.55m^3/m^3/day$ that showed a higher hydrogen production by around 6.97% than that of $IrO^2/Ti$ and cathode. It is presumed that the improvement of electrochemical activation of DSA electrode increases hydrogen production and influences the improvement of durability compared to the former electrode so that it enables stable alkaline water electrolysis.

Activation Property of Blast Furnace Slag by Calcined Alunite (하소(?燒) 명반석(明礬石)에 의(依)한 고로수쇄(高爐水碎)슬래그의 활성화(活性化) 특성(特性))

  • Kim, Hyung-Seok;Jo, Young-Do;Ahn, Ji-Whan;Kimura, Kunio;Han, Choon
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.27-35
    • /
    • 2006
  • In order to use alunite as an activator of blast furnace slag, we studied the hydration characteristics of the calcined alunite and the ground blast furnace slag. The alunite calcined at $650{\cire}C$ consists of KAl($KAl(SO_{4})_{2}$ and $Al_{2}O_{3}$. The calcined alunite reacts with $Ca(OH)_{2}$ and gypsum to form etrringite ($3CaO{\cdot}Al_{2}O_{3}{\cdot}3CaSO_{4}{\cdot}32H_{2}O$) as fellows:$2KAl(SO_{4})_{2}+2Al_{2}O_{3}+13Ca(OH)_{2}+5CaSO_{4}{\cdot}2H_{2}O+73H_{2}O{\rightarrow}3(3CaO{\cdot}Al_{2}O_{3}{\cdot}3CaSO_{4}{\cdot}32H_{2}O)+2KOH$. The $SO_{4}^{2-}$ ions from calcined alunite reacts with CaO in blast furnace slag to from gypsum, which reacts with CaO and $Al_{2}O_{3}$ to from ettringite in calcined alunite-blast furnace slag system. Therefore blast furnace slag can be activated by calcined alunite.

Effect of Impregnation and Modification on Activated Carbon for Acetaldehyde Adsorption (아세트알데하이드 흡착을 위한 활성탄의 첨착 및 개질 효과)

  • Jin Chan Park;Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.472-478
    • /
    • 2023
  • In this study, the acetaldehyde removal characteristics of activated carbon (AC) for air purifier filters were investigated using metal catalysts-impregnation and functional group-modification method. The AC with a high specific surface area(1700 m2/g) and micropores was prepared by KOH activation of coconut charcoal and the efficiency of catalyst and functional group immobilization was examined by varying the drying conditions within the pores after immersion. The physical properties of the prepared activated carbon were analyzed by BET, ICP, EA, and FT-IR, and the acetaldehyde adsorption performances were investigated using gas chromatography (GC) at various impregnation and modified conditions. As the concentration of impregnation solution increased, the amount of impregnated metal catalysts increased, while the specific surface area showed a decreasing trend. The adsorption tests of the metal catalyst-impregnated and functional group-modified activated carbons revealed that excellent adsorption performance in compositions MgO10@AC, CaO10@AC, EU10@AC, and H-U3N1@AC, respectively. The MgO10@AC, which showed the highest adsorption performance, had a breakthrough time of 533.8 minutes and adsorption capacity of 57.4 mg/g for acetaldehyde adsorption. It was found that the nano-sized MgO catalyst on the activated carbon improved the adsorption performance by interacting with carbonyl groups of acetaldehyde.

Effect of Salmonella typhimurium lipopolisaccharide Injection on the Performance, Nitrogen Balance and ME Utilization of Dietary Krill Meal in Broiler Chicks (살모넬라 LPS를 주입한 육계 병아리의 생산성과 질소밸런스 및 대사에너지 이용성에 미치는 사료 중 크릴 밀의 영향)

  • Im, J.T.;Kim, J.H.;Park , I.K.;Koh, T.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.957-966
    • /
    • 2003
  • Effects of Salmonella typhimurium lipopolysacharide(LPS) and dietary krill meal on the Growth and feed utilization were investigated in broiler chicks. Eight cages of five newly hatched chicks each were assigned and fed to one of the experimental diets containing 0.0,(basal) 0.5 or 1.0% krill meal during 3 weeks of experimental period. And half(four) of the eight cages were i.p. injected with saline or LPS(Immune response activation) every alternate day three times beginning 8 day-old during 2 week of age. Dietary krill meal did not affect growth, feed efficiency, nitrogen balance(NB), uric acid excretion, and ME utilization when the saline was injected. However, the immune response activation lowered daily gain and feed intake and NB and increased uric acid excretion, and the relative liver and spleen weight. Also, birds fed diet containing krill meal 1.0% reduced the feed efficiency and increased spleen weight, and ME and NB or ME required for gain compared with those fed basal and krill meal 0.5% diets in LPS-injected chicks. During recovery period from the immunological stress in 3rd week of age, the krill meal diet reduced the weight of liver and spleen, The results showcd that dietary krill meal did not affect the growth of broiler chicks, but the higher uric acid excretion or dietary ME value indicated the increased protein decomposition or absorption of dietary energy sources in immune response activated birds.