• Title/Summary/Keyword: KODEX

Search Result 10, Processing Time 0.017 seconds

A Study on Price Discovery and Dynamic Interdependence of ETF Market Using Vector Error Correction Model - Focuse on KODEX leverage and inverse - (VECM을 이용한 상장지수펀드 시장의 가격발견과 동태적 상호의존성 - KODEX 레버리지와 인버스 중심으로 -)

  • Kim, Soo-Kyung;Kim, Woo-Hyun;Byun, Youngtae
    • Management & Information Systems Review
    • /
    • v.38 no.1
    • /
    • pp.141-153
    • /
    • 2019
  • This study attempts to analyze the role of price discovery and the dynamic interdependence between KOSPI200 Index and KODEX Leverage(KODEX inverse), which are Korea's representative ETFs, using the vector error correction model. For the empirical analysis, one minute data of KODEX leverage, KODEX inverse and KOSPI200 index from April 10, 2018 to July 10, 2018 were used. The main results of the empirical analysis are as follows. First, between KODEX Leverage and KOSPI200 index, we found evidence that KODEX leverage plays a dominant role in price discovery. In addition, the KOSPI200 index is superior to price discovery between KODEX inverse and KOSPI200 index. Second, the KOSPI200 index has a relatively strong dependence on KODEX leverage, which is consistent with the KODEX leverage index playing a dominant role in price discovery compared to the KOSPI200 index. On the other hand, KOSPI200 index has a dependency on KODEX inverse index, but it is weaker than KODEX leverage index. These results are expected to be useful information for investors in capital markets.

Hedging Performance Using KODEX200 ETF (KODEX200 ETF를 이용한 헤지성과)

  • Byun, Youngtae
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.905-914
    • /
    • 2014
  • In this study, we examine hedging effectiveness of KODEX200 ETF and KOSPI200 futures with respect to KOSPI200 spot or KODEX200 ETF using naive, the risk-minimization models and the VECM. The sample period covers from January 5. 2010 to October 31. 2013. Daily prices of the KOSPI200 spot, KOSPI200 futures and KODEX200 were used in this study. The results are summarized ans follows. First, this study show that there is cointegration relationship among KOSPI200 spot, futures and KODEX200 ETF market. Second, there is no significant difference in hedging performance among the models. Finally, hedged position of KOSPI200 cash(unhedged position)-KODEX200 ETF(hedge vehicle) or KODEX200 ETF-KOSPI200 futures seems to improve hedging performance compared to KOSPI200 cash-KOSPI200 futures. This implies that the portfolio managers may be encouraged to use the former than the latter.

An Emperical Study on the Information Effect of ETFs (ETF의 정보효과에 관한 연구)

  • Kim, Soo-Kyung
    • Management & Information Systems Review
    • /
    • v.32 no.3
    • /
    • pp.285-297
    • /
    • 2013
  • In this study, price discovery among the KOSPI200 markets(KOSPI200 spot, KOSPI200 Futures and The ETFs) is investigated using the vector error correction model(VECM). The main findings are as follows. KODEX200(KOSEF200), KOSPI200 spot and Futures are cointegrated in most cases. Daily data from KODEX200(KOSEF200), KOSPI200 spot and KOSPI200 futures show that the movements of the three markets are interrelated. Specially, KODEX200 contains the most information, followed by the KOSPI200 spot and futures markets. KODEX200 contribute to the price discovery process. Namely KODEX200 plays a more dominant role in price discovery than the KOSPI200 spot and futures.

  • PDF

Application Plan of Public Infrastructure for Broadcasting Advertising Industry in the New Circumstance (새로운 방송 환경에서 방송광고 공용인프라 활용)

  • Cha, You-Chul;Lee, Soo-Bum;Lee, Hee-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.95-101
    • /
    • 2012
  • The advent of the multiple media representatives system make the competition in the advertising industry. In this sense, both advertising industry and academic field have interested in construction and application of public infrastructure for broadcasting advertising. More specifically, this work analyzes the value of Kodex in the smart media system. Also, this study explores a basic set of application plan of Kodex as the public infrastructure. As a result, it is necessary to build transaction system infrastructure, ads contents application infrastructure, ads promotion infrastructure, and new profit creation infrastructure in the KOBAnet and KODEX. This study, as a leading research for the application of broadcasting advertising infrastructure, aims to provide some practical implications and suggestions for further research.

Phonetic Similarity Meausre for the Korean Transliterations of Foreign Words (외국어 음차 표기의 음성적 유사도 비교 알고리즘)

  • Gang, Byeong-Ju;Lee, Jae-Seong;Choe, Gi-Seon
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1237-1246
    • /
    • 1999
  • 최근 모든 분야에서 외국과의 교류가 증대됨에 따라서 한국어 문서에는 점점 더 많은 외국어 음차 표기가 사용되는 경향이 있다. 하지만 같은 외국어에 대한 음차 표기에 개인차가 심하여 이들 음차 표기를 포함한 문서들에 대한 검색을 어렵게 만드는 원인이 되고 있다. 한 가지 해결 방법은 색인 시에 같은 외국어에서 온 음차 표기들을 등가부류로 묶어서 색인해 놓았다가 질의 시에 확장하는 방법이다. 본 논문에서는 외국어 음차 표기들의 등가부류를 만드는데 필요한 음차 표기의 음성적 유사도 비교 알고리즘인 Kodex를 제안한다. Kodex 방법은 기존의 스트링 비교 방법인 비음성적 방법에 비해 음차 표기들을 등가부류로 클러스터링하는데 있어 더 나은 성능을 보이면서도, 계산이 간단하여 훨씬 효율적으로 구현될 수 있는 장점이 있다.Abstract With the advent of digital communication technologies, as Koreans communicate with foreigners more frequently, more foreign word transliterations are being used in Korean documents more than ever before. The transliterations of foreign words are very various among individuals. This makes text retrieval tasks about these documents very difficult. In this paper we propose a new method, called Kodex, of measuring the phonetic similarity among foreign word transliterations. Kodex can be used to generate the equivalence classes of the transliterations while indexing and conflate the equivalent transliterations at the querying stage. We show that Kodex gives higher precision at the similar recall level and is more efficient in computation than non-phonetic methods based on string similarity measure.

An Empirical Study on the price discovery of the Leveraged ETFs Market (레버리지 ETF시장의 가격발견에 관한 연구)

  • Kim, Soo-Kyung
    • Management & Information Systems Review
    • /
    • v.35 no.2
    • /
    • pp.1-12
    • /
    • 2016
  • In this study, price discovery between the KOSPI200 spot, and leveraged ETFs(Leveraged KODEX, Leveraged TIGER, Leveraged KStar) is investigated using the vector error correction model(VECM). The main findings are as follows. Leveraged KODEX(Leveraged TIGER, Leveraged KStar) and KOSPI200 spot are cointegrated in most cases. There is no interrelations between the movement of Leveraged KODEX(Leveraged TIGER, Leveraged KStar) and KOSPI200 spot markets in case of daily data. Namely, in daily data, Leveraged KODEX(Leveraged TIGER, Leveraged KStar) doesn't plays more dominant role in price discovery than the KOSPI200 spot.

  • PDF

An Enhanced Context Sensitive Algorithm for Equivalent Foreign Word Transliteration Detection (문맥을 고려한 유사 외래어 검출 알고리즘의 성능 향상)

  • Ko, Sook Hyeon;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.114-121
    • /
    • 2007
  • 한국어에 대한 음성적 유사도 비교 알고리즘은 다양한 음차표기로 사용되는 외래어에 대하여 유사도 비교에 따른 등가부류를 형성해줌으로써 정보검색의 성능을 향상시킬 수 있다. 영어 환경에서의 음성적 유사도 비교 알고리즘인 SOUNDEX 알고리즘을 기반으로 하여 개발된 KODEX는 최소한의 제약사항으로 최대한의 재현율을 보였으나, 정확도 면에서 현저한 성능 감소를 보였다. 이를 보완하여 제안된 EKODEX 알고리즘은 Metaphone 알고리즘의 개념을 도입, 부분적인 모음 정보의 사용과 'ㅇ' 음가의 정보 보존 등의 제약사항을 통해 KODEX의 정확도를 끌어올렸다. 본 연구에서 제안하는 CKODEX 알고리즘은 KODEX와 EKODEX 알고리즘을 기반으로 한 것으로, 예외사항이 많은 한국어 발음 특성에 기반하여 세부적인 규칙을 정하고, 기존 알고리즘의 조건을 수정하는 방법으로 정확률과 재현율을 보다 향상시킴으로써 사용자의 질의어에 대한 클러스터링에 보다 효과적임을 밝혔다.

  • PDF

웹기반 방송광고 소재전송시스템을 통한 기업간 업무 혁신: 한국방송광고공사의 KODEX

  • Im, Se-Heon;Lee, Hui-Bok
    • 한국산학경영학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.93-105
    • /
    • 2006
  • 본 연구의 중요한 실무적 시사점은 방송영상 분야에서 한국방송광고공사의 KODEX를 이용한 e-비즈니스의 추진이 기업의 업무처리 비용을 감소시켜주고, 업무 추진에 따른 위험을 감소시켜주며, 또한 업무 효율성을 높여주어 경영성과 개선에 기여를 한다는 것을 보여준다. 즉, 본 사례연구 결과는 방송광고산업 분야에서의 e-비즈니스들에게 경영성과를 개선 기회를 제공해 주기 때문에 방송광고산업 분야의 기업들에게 성공적인 e-비즈니스 추진에 가이드라인을 제시해준다는데 있다.

  • PDF

A study on the information effect of tracking error affecting the sector ETF pricing (산업별 ETF의 가격결정에 영향을 미치는 추적오차의 정보효과에 관한 연구)

  • Byun, Young Tae;Lee, Sang Goo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.81-89
    • /
    • 2013
  • The purpose of this study is to analyze the information effect about the pricing using the ETF price, the benchmark index, and the total tracking error between the ETF price and the benchmark index on the index ETF market and sector ETF markets. Furthermore, the total tracking error is distinguished between the market tracking error and the NAV tracking error. Summary of this study are as follows: First, While KODEX200 don't have impact factors on the price, the most sectors of ETF have the factors affecting the pricing decision. They are the day before the total tracking error or market tracking error. Second, for the ETF price of the most industry, we find that the day before the market tracking error have the price discovery function because it is a negative(-) coefficients. But NAV tracking error could not find such a feature. Finally, the sector ETF price of energy chemical, construction, IT, and semiconductor industries affected of the day before positive(+) impact by the benchmark index price.

Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data (시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교)

  • Lee, Soo-Yong;Lee, Kyoung-Joung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.730-736
    • /
    • 2011
  • In this paper, we designed the models for pattern classification which can reflect the latest trend in time series. It has been shown that fusion models based on statistical and AI methods are superior to traditional ones for the pattern classification model supporting decision making. Especially, the hit rates of pattern classification models combined with fuzzy theory are relatively increased. The statistical SVM models combined with fuzzy membership function, or the models combining neural network and FCM has shown good performance. BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, and Regression Analysis were used for pattern classification models in the experiments of this paper. The economical indices DB with time series properties of the financial market(Korea, KOSPI200 DB) and the electrocardiogram DB of arrhythmia patients in hospital emergencies(USA, MIT-BIH DB) were used for data base.