• Title/Summary/Keyword: KAERI Underground Research Tunnel

Search Result 77, Processing Time 0.023 seconds

Experimental Study on Frictional Healing Behavior of Rock Joints in the Natural Barriers under Hydro-Mechanical Conditions (천연방벽 내 암반 절리의 수리-역학적 조건에서의 마찰회복 거동에 대한 실험적 연구)

  • Yong-Ki Lee;Seungbeom Choi;Kyung-Woo Park;Jin-Seop Kim;Taehyun Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.42-56
    • /
    • 2023
  • In deep geological disposal of high-level radioactive waste (HLW), the natural barrier must physically support the disposal facility and delay the movement of radionuclides for at least hundreds of thousands of years. To evaluate the long-term geological evolution of the natural barriers, it is essential to analyze the long-term behavior of rock joints, including the frictional healing behavior. This study aimed to experimentally analyze the frictional healing behavior of rock joints under hydro-mechanical (H-M) conditions through the slide-hold-slide (SHS) test. The SHS tests were performed under mechanical and H-M conditions for joint specimens of different roughness. In the H-M conditions, the frictional healing rate tended to increase, which was more evident in the specimens with large roughness. In addition, it was confirmed that the effect of the hydro-mechanical conditions was more significant when the effective normal stress acting on the joint surface was small. These results are expected to be used as fundamental data to understand the frictional healing behavior of rock joints in the natural barriers.

Quantitative Damage Assessment in KURT Granite by Acoustic Emission (미소파괴음을 이용한 KURT 화강암의 손상에 관한 정량적 평가)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Hey-Joo;Lee, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.305-314
    • /
    • 2012
  • This paper presents the quantitative damage assessment of granite taken from KAERI Underground Research Tunnel using acoustic emission (AE). The results determined showed the crack initiation and crack damage stress occurred at 48%, 72% of uniaxial compressive strength (UCS) and until the applied stress level was reached the crack damage stress, the damage degree was 0.06. When the applied stress exceeded 80%, 90% of UCS, the damage degree were 0.34, 0.06 and which were similar to those obtained from axial deformation modulus. The simply regression analysis was used to interpret the relationship of the two damage assessment techniques and the two were highly correlated ($R^2$=0.90). Therefore, damage degree based on the AE energy and mohr-coulomb failure criterion were adopted to predict the mechanical properties. As results, the axial deformation modulus, rock strength, internal friction angle, and cohesion of KURT rock were reduced 6%, 12%, 7%, and 3% until the applied stress was 70% of UCS. But when the applied stress reached 90% of UCS, the results were more reduced 69%, 72%, 62%, and 24%, respectively.

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

Study on Q-value prediction ahead of tunnel excavation face using recurrent neural network (순환인공신경망을 활용한 터널굴착면 전방 Q값 예측에 관한 연구)

  • Hong, Chang-Ho;Kim, Jin;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.239-248
    • /
    • 2020
  • Exact rock classification helps suitable support patterns to be installed. Face mapping is usually conducted to classify the rock mass using RMR (Rock Mass Ration) or Q values. There have been several attempts to predict the grade of rock mass using mechanical data of jumbo drills or probe drills and photographs of excavation surfaces by using deep learning. However, they took long time, or had a limitation that it is impossible to grasp the rock grade in ahead of the tunnel surface. In this study, a method to predict the Q value ahead of excavation surface is developed using recurrent neural network (RNN) technique and it is compared with the Q values from face mapping for verification. Among Q values from over 4,600 tunnel faces, 70% of data was used for learning, and the rests were used for verification. Repeated learnings were performed in different number of learning and number of previous excavation surfaces utilized for learning. The coincidence between the predicted and actual Q values was compared with the root mean square error (RMSE). RMSE value from 600 times repeated learning with 2 prior excavation faces gives a lowest values. The results from this study can vary with the input data sets, the results can help to understand how the past ground conditions affect the future ground conditions and to predict the Q value ahead of the tunnel excavation face.

Thermal Conductivity of Granite from the KAERI Underground Research Tunnel Site (지하처분연구시설 부지 화강암의 열전도도)

  • Cho, Won-Jin;Kwon, Sang-Ki;Choi, Jong-Won
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • To obtain the input data for the design and long-tenn performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The rock specimens were sampled at the various depths from the surface, and the thermal conductivity was measured under the dry and water-saturated conditions. Under the dry condition, the thermal conductivities of the granite rocks decrease with increasing porosity and range from 2.1 W/mK to 3.1 W/mK. The water-saturated rock samples showed greater thermal conductivities than the dry samples, and the thermal conductivities of the granite rocks range from 2.9 W/mK 3.6 W/mK. The anisotropy effects on the thermal conductivity of granite of the site seem to be insignificant.

A Numerical Study on the Step 0 Benchmark Test in Task C of DECOVALEX-2023: Simulation for Thermo-Hydro-Mechanical Coupled Behavior by Using OGS-FLAC (DECOVALEX-2023 Task C 내 Step 0 벤치마크 수치해석 연구: OGS-FLAC을 활용한 열-수리-역학 복합거동 수치해석)

  • Kim, Taehyun;Park, Chan-Hee;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.610-622
    • /
    • 2021
  • The DECOVALEX project is one of the representative international cooperative projects to enhance the understanding of the complex Thermo-Hydro-Mechanical-Chemical(THMC) coupled behavior in the high-level radioactive waste disposal system based on the numerical simulation. DECOVALEX-2023 is the current phase consisting of 7 tasks, and Task C aims to model the THM coupled behavior in the disposal system based on the Full-scale Emplacement (FE) experiment at the Mont-Terri underground rock laboratory. This study performs the numerical simulation based on the OGS-FLAC developed for the current study. In the numerical model, we emplaced the heater with constant power horizontally based on the FE experiment and monitored the pressure development, temperature increase, and mechanical deformation at the specific monitoring points. We monitored the capillary pressure as the primary effect inducing the flow in the buffer system, and thermal stress and pressurization were dominant in the surrounding rocks' area. The results will also be compared and validated with the other participating groups and the experimental data further.

Characterization of Groundwater Colloids From the Granitic KURT Site and Their Roles in Radionuclide Migration

  • Baik, Min-Hoon;Park, Tae-Jin;Cho, Hye-Ryun;Jung, Euo Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.279-296
    • /
    • 2022
  • The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10-250 nm and 33-64 ㎍·L-1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.

Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019 (2008년부터 2019년까지 수행된 국제공동연구 DECOVALEX 소개)

  • Lee, Changsoo;Kim, Taehyeon;Lee, Jaewon;Park, Jung-Wook;Kwon, Seha;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.271-305
    • /
    • 2020
  • An effect of coupled thermo-hydro-mechanical and chemical (THMC) behavior is an essential part of the performance and safety assessment of geological disposal systems for high-level radioactive waste and spent nuclear fuel. Furthermore, numerical models and modeling techniques are necessary to analyze and predict the coupled THMC behavior in the disposal systems. However, phenomena associated with the coupled THMC behavior are nonlinear, and the constitutive relationships between them are not well known. Therefore, it is challenging to develop numerical models and modeling techniques to analyze and predict the coupled THMC behavior in the geological disposal systems. It is also difficult to verify and validate the development of the models and techniques because it requires expensive laboratory tests and in-situ experiments that need to be performed for a long time. DECOVALEX was initiated in 1992 to efficiently develop numerical models and modeling techniques and validate the developed models and techniques against the lab and in-situ experiments. In Korea, Korea Atomic Energy Research Institute has participated in DECOVALEX-2011, DECOVALEX-2015, and DECOVALEX-2019 since 2008. In this study, all tasks in the three DECOVALEX projects were introduced to the researcher in the field of rock mechanics and geotechnical engineering in Korea.

Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer (벤토나이트 완충재 내 기체 이동의 거동 특성 관련 연구 동향 소개)

  • Kang, Sinhang;Kim, Jung-Tae;Lee, Changsoo;Kim, Jin-Seoup
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.333-359
    • /
    • 2021
  • Gases such as hydrogen and radon can be generated around the canister in high-level radioactive waste disposal systems due to several reasons including the corrosion of metal materials. When the gas generation rate exceeds the gas diffusion rate in the low-permeability bentonite buffer, the gas phase will form and accumulate in the engineered barrier system. If the gas pressure exceeds the gas entry pressure, gas can migrate into the bentonite buffer, resulting in pathway dilation flow and advective flow. Because a sudden occurrence of dilation flow can cause radionuclide leakage out of the engineered barrier of the radioactive waste disposal system, it is necessary to understand the gas migration behavior in the bentonite buffer to quantitatively evaluate the long-term safety of the engineered barrier. Experimental research investigating the characteristics of gas migration in saturated bentonite and research developing numerical models capable of simulating such behaviors are being actively conducted worldwide. In this technical note, previous gas injection experiments and the numerical models proposed to verify such behaviors are introduced, and the future challenges necessary for the investigation of gas migration are summarized.

Assessment of Corrosion Lifetime of a Copper Disposal Canister Based on the Finnish Posiva Methodology

  • Choi, Heui-Joo;Lee, Jongyoul;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.51-62
    • /
    • 2020
  • In this paper, an approach developed by the Finnish nuclear waste management organization, Posiva, for the construction license of a geological repository was reviewed. Furthermore, a computer program based on the approach was developed. By using the computer program, the lifetime of a copper disposal canister, which was a key engineered barrier of the geological repository, was predicted under the KAERI Underground Research Tunnel (KURT) geologic conditions. The computer program was developed considering the mass transport of corroding agents, such as oxygen and sulfide, through the buffer and backfill. Shortly after the closure of the repository, the corrosion depths of a copper canister due to oxygen in the pores of the buffer and backfill were calculated. Additionally, the long-term corrosion of a copper canister due to sulfide was analyzed in two cases: intact buffer and eroded buffer. Under various conditions of the engineered barrier, the corrosion lifetimes of the copper canister due to sulfide significantly exceeded one million years. Finally, this study shows that it is necessary to carefully characterize the transmissivity of rock and sulfide concentration during site characterization to accurately predict the canister lifetime.