• Title/Summary/Keyword: K5 system

Search Result 31,957, Processing Time 0.056 seconds

DISCRETE EVENT SYSTEM SIMULATION APPROACH FOR AN OPERATION ANALYSIS OF A HEADEND PROCESS FACILITY

  • Lee, Hyo-Jik;Kim, Sung-Hyun;Park, Byung-Suk
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.739-746
    • /
    • 2009
  • This paper introduces facility operation modeling and simulation based primarily on a discrete event system modeling scheme. Many modern industrial facilities are so complex that their operational status cannot be estimated by simple calculations. In general, a facility can consist of many processes and transfers of material between processes that may be modeled as a discrete event system. This paper introduces the current status of studies on operation modeling and simulation for typical nuclear facilities, along with some examples. In addition, this paper provides insights about how a discrete event system can be applied to a model for a nuclear facility. A headend facility is chosen for operation modeling and the simulation, and detailed procedure is thoroughly described from modeling to an analysis of discrete event results. These kinds of modeling and simulation are very important because they can contribute to facility design and operation in terms of prediction of system behavior, quantification of facility capacity, bottleneck identification and efficient operation scheduling.

A study for performance improvement by system analysis of HTS running K Securities (K증권 홈트레이닝 시스템 분석을 통한 성능개선에 관한 연구)

  • Kim, Hyun Ho;Park, Yong Duck
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.19-28
    • /
    • 2009
  • Computer system performance has always had the possibility of affecting business profitability, but with the advent of the World Wide Web where customers interact directly with Web servers, response time can have a direct and dramatic impact on business revenue. This paper is written in the operation environment and system analysis of HTS(Home Trading System) running K Securities. This paper also shows the method for performance improvement through investigation and analysis for the overall systems resources whether HTS has an appropriate performance or not. Performance analysis includes specially CPU analysis, Memory analysis, Disk Input/Output analysis and application analysis. Besides providing more detailed server specification for expansion from now on, system performance can be maintained with effect in the future. Through this study it is possible to manage the performance of HTS more easily and to solve problems such as a bottleneck more quickly.

Traffic Test Method for Networked Control System (네트워크 기반 제어시스템의 통신부하 시험방법)

  • Yu, Kwang-Myung;Kim, Jong-An;Ryu, Ho-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.688-695
    • /
    • 2013
  • Networked Control Systems(NCS) contain the structure which controllers, actuators and sensors are connected to communication network. And they have been adopted in large and complicated plant area due to the advantages of mitigating computational bottleneck and maintenance. Although this structure provides many benefits, it brings in problems of unpredictable communication delay, data loss and corruption. This phenomena have to be considered in designing NCSs since it affects on overall control system stability. This paper introduces network traffic test method for ethernet based NCSs to find out maximum network usage which guarantee stable control operation. Test results shows this methods can be adopted in various types of NCSs and contributes economical system design and effective system operation.

A Numerical Study on the Performance of a Two-Stage Ejector-Diffuser System

  • Kong, Fanshi;Kim, Heuy Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 2015
  • The conventional ejector-diffuser system makes use of high pressure primary stream to propel the secondary stream through pure shear action for the purposes of transport or compression of fluid. It has been widely used in many industrial applications such as seawater desalination, solar refrigeration, marine engineering, etc. The present study is performed numerically to study the performance of a two-stage ejector-diffuser system. The detailed flow phenomenon of the ejector-diffuser system has been critically predicted by means of the numerical approach using compressible Reynolds averaged Navier-Stokes (RANS) equations. The axi-symmetric supersonic ejector-diffuser flow has been solved by a fully implicit finite volume scheme with a two-equation k-omega turbulence model. The numerical results are validated with existing experimental data. Detailed flow physics and their contributions on ejector performance are detected to compare both single-stage and two-stage ejectors. The performance improvement on the ejector-diffuser system is discussed in terms of the mass flux ratio and the coefficient of power.

A Study on the Optimal Design of a Robotic Welding System for a High-strength Steel Amor Plate (고장력 장갑판재의 자동용접 시스템 최적 설계에 관한 연구)

  • Kim, Byeong-Ho;Kang, Hyeon-Je;Seo, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.31-38
    • /
    • 2016
  • This study proposes an optimal design for a robotic welding system for a high-strength steel armor plate. In order to identify the welding defect parameters, we analyzed the 4M (man, machine, materials, method) characteristics diagram, as well as a cause and effect matrix, to improve the productivity and quality of welding defects. From these analyses, we designed optimal welding conditions and carried out welding tests -- such as mechanical testing and macro structure tests - with positive results. We determined that it was possible to obtain a quality similar to manual welding with our robotic welding system. In the future, we expect that the system will be used as inspiration for future welding system designs.

The Implementation of The Multi-Subject, Multi-Channel Optical Telemetry System for Physiological Signals

  • Park, Cha-Hun;Park, Jong-Dae;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.448-454
    • /
    • 2000
  • This paper describes the implementation of a multi-subject, multi-channel optical telemetry system for the short range measurement of electrocardiograms (EKGs) a system which receives command signals and transmits physiological signals to the external system using LED (Light Emitting Diode) and PD (Photodiode). This system decreases the dependency of power supply voltage to the CMOS IC chips and a new enforced synchronization technique using infrared bi-directional communication has also been proposed. The telemetry IC with the size of $5.1{\times}5.1mm^2$ has the following functions: receiving of command signal, initialization of internal state of all functional blocks, decoding of subject selection signal, time division multiplexing of 4-channel modulated physiological signals, transmission of modulated signals to external system, and auto power down control.

  • PDF

A Study on the Productivity Increment through Construction of Lean Production System for Automobile Plant in China (중국 자동차 공장의 린 생산 체계 구축을 통한 생산성 향상에 관한 연구)

  • Jang, Jung-Hwan;Zhang, Jing-Lun;Yoo, Sung-Hee;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.117-122
    • /
    • 2012
  • This paper deals with the productivity increment through construction of lean production system for automobile factory in China. This lean production system has been progressed according to 5 steps. Step 1 is the work preparation. Step 2 is the process design. Step 3 is the establishment of method to count production quantity. Step 4 is the establishment of measuring method for input and output. Finally, step 5 is the construction of flexible production system able to adapt for environment change. This lean production system is expected to obtain the productivity increment by 50% for plastic plant and reduction by 50% in inventory quantity.

±80kV 60MW HVDC Operational Strategy in Abnormal State (비상상태에서의 제주 ±80kV 60MW HVDC 운전 방안 연구)

  • Yoon, Jong-Su;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.664-668
    • /
    • 2012
  • This paper presents the operation strategy of KEPCO(Korea Electric Power COporation) ${\pm}80kV$ 60MW Bipole HVDC system that will be applied between Guemak C/S(converter station) and Hanlim C/S in Jeju island. Unlike intertie HVDC system, this system is located in AC power grid inside. Therefore, the enhancement of system security related with line flow and bus voltages can be major operation strategy. In this paper, in particular, the optimal operation algorithm in the abnormal(not steady state) power system is presented and simulated.

New Measurement Method of Wound Healing by Stereoimage Optical Topometer System (Stereoimage Optical Topometer System을 이용한 새로운 창상 계측 방법)

  • Rho, Kyoung-Hwan;Han, Seung-Kyu;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.755-758
    • /
    • 2008
  • Purpose: In order to determine the amount of wound healing, objective sequential assessments of changes in wound size and depth are essential. Although a variety of measurements for wound healing have been proposed, a gold standard for quantifying day-to-day changes in healing has not been established. We present here a simple and non-invasive wound measurement method that quantitatively and accurately documents changes of the size of a raw surface and the volume of a soft tissue defect using a stereoimage optical topometer(SOT) system. Methods: Using a 5mm diameter biopsy punch, four circular wounds were created on abdominal area of a diabetic mouse. Photographs were taken using SOT system at baseline, 5th day and 10th postoperative day. The wound margin was traced on a digitalized photo and evaluated the area and the volume of the wound by SOT system. Results: The SOT system calculated a mean wound surface of $15.93{\pm}0.29mm^2$ and volume of $827.50{\pm}88.86$ intensity/pixel${\times}$area(I/PA) immediately after wounding. On the 5th day after the operation wound surface declined by $10.73mm^2$ and on the 10th day declined by $5.95mm^2$. The wound volume also declined from 827.50 I/PA to 161.75 I/PA and 30.50 I/PA on 0, 5th and 10th day, respectively. Conclusion: The SOT system described in this study represents a reliable, simple, practical, and non-invasive technique to accurately monitor and evaluate wound healing.

Detection of Change in Water System Due to Collapse of Laos Xe pian-Xe namnoy Dam Using KOMPSAT-5 Satellites (KOMPSAT-5 위성 영상을 활용한 라오스 세피안-세남노이 댐 붕괴에 따른 수계변화 탐지)

  • Kim, Yunjee;Lee, Moungjin;Lee, Sunmin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1417-1424
    • /
    • 2019
  • Recently, disaster accidents have occurred frequently over the world, and disaster have been continuously studied using remote sensing due to large scale and hard-to-reach features. The collapse of Laos Xe pian-Xe namnoy dam in 2018 also caused a lot of human and economic damage. This study's purpose is to change detect water system due to the collapse of Xe pian-Xe namnoy dam in Laos and to derive areas where future flooding is expected. The water system is extracted from each image of KOMPSAT-5 before and after the dam collapse in order to quantitatively change detect in the water system. The result of the water system area increased more than 10 times after the dam collapse. In addition, it is confirmed that the newly created water system is thickly created in areas of low altitude area. This study result can be used in the future to systematize the pre-response to abnormalities and issues in existing operating dams. And then, if combined with other remote sensing data, more diverse and specific results could be obtained.