Browse > Article
http://dx.doi.org/10.7780/kjrs.2019.35.6.4.10

Detection of Change in Water System Due to Collapse of Laos Xe pian-Xe namnoy Dam Using KOMPSAT-5 Satellites  

Kim, Yunjee (Environmental Assessment Group, Korea Environment Institute)
Lee, Moungjin (Center for Environmental Assessment Monitoring, Korea Environment Institute)
Lee, Sunmin (Center for Environmental Assessment Monitoring, Korea Environment Institute)
Publication Information
Korean Journal of Remote Sensing / v.35, no.6_4, 2019 , pp. 1417-1424 More about this Journal
Abstract
Recently, disaster accidents have occurred frequently over the world, and disaster have been continuously studied using remote sensing due to large scale and hard-to-reach features. The collapse of Laos Xe pian-Xe namnoy dam in 2018 also caused a lot of human and economic damage. This study's purpose is to change detect water system due to the collapse of Xe pian-Xe namnoy dam in Laos and to derive areas where future flooding is expected. The water system is extracted from each image of KOMPSAT-5 before and after the dam collapse in order to quantitatively change detect in the water system. The result of the water system area increased more than 10 times after the dam collapse. In addition, it is confirmed that the newly created water system is thickly created in areas of low altitude area. This study result can be used in the future to systematize the pre-response to abnormalities and issues in existing operating dams. And then, if combined with other remote sensing data, more diverse and specific results could be obtained.
Keywords
KOMPSAT-5; SAR; Water system; Xe pian-Xe namnoy dam; Change detect;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Jung, J. and D. J. Kim, 2014. Temporal decorrelation model in repeat pass SAR interferometry for detection of volcanic ash, Proc. of 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec, Jul. 13-18, pp. 410-413.
2 Keum, J. H., J. H. Kim, S. R. Lee, J. M. Shin, J. C. Yoon, R. Episcopo, M. Guelfi, F. Impagnatiello, J. Marini, D. Scaranari, and D. Vicari, 2011. KOMPSAT-5 SAR data processing: Design drivers and key performance, Proc. of 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, South Korea, Sep. 26-30, pp. 1-4.
3 Jang, J. C., K. Park, and D. Yang, 2018. Validation of sea surface wind estimated from KOMPSAT-5 backscattering coefficient data, Korean Journal of Remote Sensing, 34(6-3): 1383-1398 (in Korean with English abstract).   DOI
4 Jha, M. N., J. Levy, and Y. Gao, 2008. Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance, Sensors, 8(1): 236-255.   DOI
5 Lee, J. S., 1980. Digital image enhancement and noise filtering by use of local statistics, IEEE Transactions on Pattern Analysis & Machine Intelligence, 2: 165-168.   DOI
6 Kim, D., H. S. Jung, and W. Baek, 2016. Comparative analysis among radar image filters for flood mapping, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 34(1): 43-52.   DOI
7 Kim, J. W., D. J. Kim, S. H. Kim, B. J. Hwang, and J. Yackel, 2012. Detection of Icebergs Using Full-Polarimetric RADARSAT-2 SAR Data in West Antarctica, Korean Journal of Remote Sensing, 28(1): 21-28.   DOI
8 Kim, S. W., D. H. Kim, and Y. K. Lee, 2018. Operational ship monitoring based on integrated analysis of KOMPSAT-5 SAR and AIS data, Korean Journal of Remote Sensing, 34(2-2): 327-338 (in Korean with English abstract).   DOI
9 Lee, M., S. Myeong, S. Jeon, and J. S. Won, 2009. Identification of Flooded Areas and Post-flooding Conditions: Developing Flood Damage Mitigation Strategies Using Satellite Radar Imagery, Journal of Environmental Policy, 8(2): 1-23.   DOI
10 Llinas, J., 2002. Information fusion for natural and manmade disasters, Proc. of the Fifth International Conference on Information Fusion, Annapolis, MD, Jul. 8-11, vol. 1, pp. 570-576.
11 Lopes, A., E. Nezry, R. Touzi, and H. Laur, 1993. Structure detection and statistical adaptive speckle filtering in SAR images, International Journal of Remote Sensing, 14(9): 1735-1758.   DOI
12 Bello, O. M. and Y. A. Aina, 2014. Satellite remote sensing as a tool in disaster management and sustainable development: towards a synergistic approach, Procedia-Social and Behavioral Sciences, 120: 365-373.   DOI
13 Park, S. E., 2016. Detection of water bodies from Kompsat-5 SAR data, Korean Journal of Remote Sensing, 32(5): 539-550 (in Korean with English abstract).   DOI
14 Schlaffer, S., P. Matgen, M. Hollaus, and W. Wagner, 2015. Flood detection from multi-temporal SAR data using harmonic analysis and change detection, International Journal of Applied Earth Observation and Geoinformation, 38: 15-24.   DOI
15 Baek, W. K. and H. S. Jung, 2018. Precise measurements of the along-track surface deformation related to the 2016 Kumamoto earthquakes via ionospheric correction of multiple-aperture SAR interferograms, Korean Journal of Remote Sensing, 34(6-4): 1489-1501 (in Korean with English abstract).   DOI
16 Brunner, D., G. Lemoine, and L. Bruzzone, 2010. Earthquake damage assessment of buildings using VHR optical and SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, 48(5): 2403-2420.   DOI
17 Choi, M., T. Kim, H. J. Bae, Y. Jang, T. B. Chae, and Y. S. Chun, 2011. The KOMPSAT-5 Image Reception and Processing Element, Proc. of 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Jul. 24-29, pp. 2314-2317.
18 Han, H., S. H. Hong, H. C. Kim, T. B. Chae, and H. J. Choi, 2017. A study of the feasibility of using KOMPSAT-5 SAR data to map sea ice in the Chukchi Sea in late summer, Remote Sensing Letters, 8(5): 468-477.   DOI
19 Dell'Acqua, F., C. Bignami, M. Chini, G. Lisini, D. A. Polli, and S. Stramondo, 2011. Earthquake damages rapid mapping by satellite remote sensing data: L'Aquila april 6th, 2009 event, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4): 935-943.   DOI
20 Di Pasquale, A., M. Corsetti, P. Guccione, A. Lugli, M. Nicoletti, G. Nico, and M. Zonno, 2013. Groundbased SAR interferometry as a supporting tool in natural and man-made disasters, Proc. of the 33rd EARSel symposium, Matera, Italy, Jun. 3-6, pp. 173-186.
21 Hwang, J. I., S. H. Chae, D. Kim, and H. S. Jung, 2017. Application of Artificial Neural Networks to Ship Detection from X-Band Kompsat-5 Imagery, Applied Sciences, 7(9): 961.   DOI
22 Jamtveit, B., Y. Ben-Zion, F. Renard, and H. Austrheim, 2018. Earthquake-induced transformation of the lower crust, Nature, 556(7702): 487.   DOI
23 Sohn, H. G., Y. S. Song, and H. Chang, 2004. Improvement of Water Area Classification During a Flood Using RADARSAT SAR Imagery and Terrain Informations In Mountainous Area, Journal of the Korean Society of Civil Engineers, 24(2D): 293-301.
24 Ye, C. S., 2015. Water body extraction in SAR image using water body texture index, Korean Journal of Remote Sensing, 31(4): 337-346.   DOI
25 Tralli, D. M., R. G. Blom, V. Zlotnicki, A. Donnellan, and D. Evans, 2005. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards, ISPRS Journal of Photogrammetry and Remote Sensing, 59(4): 185-198.   DOI
26 Voigt, S., T. Kemper, T. Riedlinger, R. Kiefl, K. Scholte, and H. Mehl, 2007. Satellite image analysis for disaster and crisis-management support, IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1520-1528.   DOI