• Title/Summary/Keyword: K-Shortest Paths

Search Result 111, Processing Time 0.02 seconds

A New Geometric Proof on Shortest Paths of Bounded Curvature (제한된 곡률을 갖는 최단경로에 대한 새로운 기하학적 증명)

  • Ahn Hee-Kap;Bae Sang Won;Cheong Otfried
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.958-960
    • /
    • 2005
  • We consider a point robot in the plane whose turning radius is constrained to be at least 1 and that is not allowed to make reversals. Given a starting configuration(a location and an orientation) for the robot, we give a new geometric proof on the combinatorial structure of curvature-constrained shortest paths to a final point with free orientation.

  • PDF

Extraction of specific common genetic network of side effect pair, and prediction of side effects for a drug based on PPI network

  • Hwang, Youhyeon;Oh, Min;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.115-123
    • /
    • 2016
  • In this study, we collect various side effect pairs which are appeared frequently at many drugs, and select side effect pairs that have higher severity. For every selected side effect pair, we extract common genetic networks which are shared by side effects' genes and drugs' target genes based on PPI(Protein-Protein Interaction) network. For this work, firstly, we gather drug related data, side effect data and PPI data. Secondly, for extracting common genetic network, we find shortest paths between drug target genes and side effect genes based on PPI network, and integrate these shortest paths. Thirdly, we develop a classification model which uses this common genetic network as a classifier. We calculate similarity score between the common genetic network and genetic network of a drug for classifying the drug. Lastly, we validate our classification model by means of AUC(Area Under the Curve) value.

On Finding an Optimal Departure Time in Time-Dependent Networks

  • Park, Chan-Kyoo;Lee, Sangwook;Park, Soondal
    • Management Science and Financial Engineering
    • /
    • v.10 no.1
    • /
    • pp.53-75
    • /
    • 2004
  • Most existing studies on time-dependent networks have been focused on finding a minimum delay path given a departure time at the origin. There, however, frequently happens a situation where users can select any departure time in a certain time interval and want to spend as little time as possible on traveling the networks. In that case. the delay spent on traveling networks depends on not only paths but also the actual departure time at the origin. In this paper, we propose a new problem in time-dependent networks whose objective is to find an optimal departure time given possible departure time interval at the origin. From the optimal departure time, we can obtain a path with minimum delay among all paths for possible departure times at the origin. In addition, we present an algorithm for finding an optimal departure time by enumerating trees which remain shortest path tree for a certain time interval.

MODELS AND SOLUTION METHODS FOR SHORTEST PATHS IN A NETWORK WITH TIME-DEPENDENT FLOW SPEEDS

  • Sung, Ki-Seok;Bell, Michael G-H
    • Management Science and Financial Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • The Shortest Path Problem in Time-dependent Networks, where the travel time of each link depends on the time interval, is not realistic since the model and its solution violate the Non-passing Property (NPP:often referred to as FIFO) of real phenomena. Furthermore, solving the problem needs much more computational and memory complexity than the general shortest path problem. A new model for Time-dependent Networks where the flow speeds of each link depend on time interval, is suggested. The model is more realistic since its solution maintains the NPP. Solving the problem needs just a little more computational complexity, and the same memory complexity, as the general shortest path problem. A solution algorithm modified from Dijkstra's label setting algorithm is presented. We extend this model to the problem of Minimum Expected Time Path in Time-dependent Stochastic Networks where flow speeds of each link change statistically on each time interval. A solution method using the Kth-shortest Path algorithm is presented.

  • PDF

Fault Diameter and Mutually Disjoint Paths in Multidimensional Torus Networks (다차원 토러스 네트워크의 고장지름과 서로소인 경로들)

  • Kim, Hee-Chul;Im, Do-Bin;Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.176-186
    • /
    • 2007
  • An interconnection network can be represented as a graph where a vertex corresponds to a node and an edge corresponds to a link. The diameter of an interconnection network is the maximum length of the shortest paths between all pairs of vertices. The fault diameter of an interconnection network G is the maximum length of the shortest paths between all two fault-free vertices when there are $_k(G)-1$ or less faulty vertices, where $_k(G)$ is the connectivity of G. The fault diameter of an R-regular graph G with diameter of 3 or more and connectivity ${\tau}$ is at least diam(G)+1 where diam(G) is the diameter of G. We show that the fault diameter of a 2-dimensional $m{\times}n$ torus with $m,n{\geq}3$ is max(m,n) if m=3 or n=3; otherwise, the fault diameter is equal to its diameter plus 1. We also show that in $d({\geq}3)$-dimensional $k_1{\times}k_2{\times}{\cdots}{\times}k_d$ torus with each $k_i{\geq}3$, there are 2d mutually disjoint paths joining any two vertices such that the lengths of all these paths are at most diameter+1. The paths joining two vertices u and v are called to be mutually disjoint if the common vertices on these paths are u and v. Using these mutually disjoint paths, we show that the fault diameter of $d({\geq}3)$-dimensional $k_1{\times}k_2{\times}{\cdots}{\times}k_d$ totus with each $k_i{\geq}3$ is equal to its diameter plus 1.

The application of network theory to subway transportation in Seoul, Korea

  • Kim, Chae-Bong;Kim, Hak-Soo;Kim, Seong-in
    • Korean Management Science Review
    • /
    • v.14 no.2
    • /
    • pp.81-90
    • /
    • 1997
  • Network approach is used to find the shortest paths and transportation time between the subway stations in Seoul, Korea. Because of transfer stations, we reconstruct the subway network to compute the shortest routes and corresponding transportation times. The reconstructed network is useful to obtain desired information because it can handle the transfer time between tracks. Time and route information about the subway system is obtained and it will be displayed in the subway guide board at each station. Then, all passengers can have the information of shortest route to a destination and corresponding transportation time.

  • PDF

A Study on Area Division Method to use the Hour-based Vehicle Speed Information (시간단위 차량통행 속도정보의 활용을 위한 구역분할 방법의 연구)

  • Park, Sung-Mee;Moon, Gee-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.201-208
    • /
    • 2010
  • This research is about developing an efficient solution procedure for the vehicle routing problem under varying vehicle moving speeds for hour-based time interval. Different moving speeds for every hour is too difficult condition to solve for this type of combinatorial optimization problem. A methodology to divide the 12 hour based time interval offered by government into 5 different time intervals and then divide delivery area into 12 small divisions first and then re-organizing them into 5 groups. Then vehicle moving speeds are no longer varying in each of the 5 divisions. Therefore, a typical TSP solution procedure may be applied to find the shortest path for all 5 divisions and then connect the local shortest paths to form a delivery path for whole area. Developed solution procedures are explained in detail with 60 points example.

Heuristic Algorithm for Searching Multiple Paths (복수 경로 탐색을 위한 휴리스틱 알고리즘에 대한 연구)

  • Shin, Yongwook;Yang, Taeyong;Baek, Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.226-235
    • /
    • 2006
  • Telematics is expected to be one of the fastest growing businesses in information technology area. It may create a new emerging market in industry related to automotive, telecommunications, and information services. Especially vehicle navigation service is considered as a killer application among telematics service applications. The current vehicle navigation service typically recommends a single path that is based on the traveling time or distance from the origin to the destination. The system provides two options for users to choose either via highway or via any road. Since the traffics and road conditions of big cities are very complicated and dynamic, the demand of multi-path guidance system is increasing in telematics market. The multi-path guidance system should allow drivers to choose a path based on their individual preferences such as traveling time, distance, or route familiarity. Using the Lawler's algorithm, it is possible to find multiple paths; however, due to the lengthy computational time, it is not suitable for the real-time services. This study suggests a computationally feasible and efficient heuristic multiple paths finding algorithm that is reliable for the real-time vehicle navigation services.

Essential Arcs of a Directed Acyclic Graph

  • Chung, Ee-Suk
    • Management Science and Financial Engineering
    • /
    • v.13 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • Among many graphs, directed acyclic graph(DAG) attracts many researchers due to its nice property of existence of topological sort. In some classic graph problems, it is known that, if we use the aforementioned property, then much efficient algorithms can be generated. So, in this paper, new algorithm for the all-pairs shortest path problem in a DAG is proposed. While the algorithm performing the iteration, it identifies the set of essential arcs which requires in a shortest path. So, the proposed algorithm has a running time of $O(m^*n+m)$, where m, n and $m^*$ denote the number of arcs, number of node, and the number of essential arcs in a DAG, respectively.

A Genetic Algorithm for Route Guidance System in Intermodal Transportation Networks with Time - Schedule Constraints (서비스시간 제한이 있는 복합교통망에서의 경로안내 시스템을 위한 유전자 알고리듬)

  • Chang, In-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.140-149
    • /
    • 2001
  • The paper discusses the problem of finding the Origin-Destination(O-D) shortest paths in internodal transportation networks with time-schedule constraints. The shortest path problem on the internodal transportation network is concerned with finding a path with minimum distance, time, or cost from an origin to a destination using all possible transportation modalities. The time-schedule constraint requires that the departure time to travel from a transfer station to another node takes place only at one of pre-specified departure times. The scheduled departure times at the transfer station are the times when the passengers are allowed to leave the station to another node using the relative transportation modality. Therefore, the total time of a path in an internodal transportation network subject to time-schedule constraints includes traveling time and transfer waiting time. In this paper, a genetic algorithm (GA) approach is developed to deal with this problem. The effectiveness of the GA approach is evaluated using several test problems.

  • PDF