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We consider a point robot in the plane whose turning radius is constrained to be at least 1 and that is not allowed to make reversals.

Given a starting configuration (a location and an orientation) for the robot, we give a new geometric proof on the combinatorial structure
of curvature-constrained shortest paths to a final point with free orientation.

1 Introduction

Imagine that a point robot is moving in the plane whose turning
radius is constrained to be at least 1. We assume that the robot is
moving only forward, that is, it is not allowed to make reversals.

Dubins (3] was perhaps the first to study optimal paths of such
robots and proved that a curvature-constrained shortest path from
a starting configuration to a final configuration consists of at most
3 segments of types CC'C or CSC, or their substrings, where C is
a circular arc of unit circle and S specifies a straight line segment.

An interesting variation is finding a curvature-constrained short-
est path from a configuration (a point with a fixed orientation 8)
to a point with free orientation. In this paper, we give a charac-
terization of a curvature-constrained shortest path from an initial
configuration s = (s, f) to a final location ¢ that it consists of at
most 2 segments. More precisely, it is of type CC when ¢ lies in
the interior of two unit discs tangent to s, or of type CS (or its
substrings) otherwise. Note that the shortest path consists of one
segment only when ¢ lies on the boundary of two unit discs tangent
to s or on the half-line from s in direction 8 of s.
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Theorem 1 A curvature-constrained shortest path from s to a final
location t is of type CC when't lies in the interior of two unit discs
tangent to s, or of type C'S or its substrings otherwise.

Before our result, Boissonnat and Bui [2] have proved Theorem 1
using a tool from Control Theory, known as the minimum principle
of Pontyagin and transversality condition. Their results have been
used to construct optimal paths for car-like robots {4].

Our results are essentially the same as those of Boissonnat and
Bui [2], but the interest of our work lies in the method of proof: we
make use of only geometry of the curvature-constrained paths (we
don’t use(need) any black box that gives an answer). The proofs
themselves are quite simple and intuitive. Our characterization in-
deed gives continuous deformation of a Dubins path to another Du-
bins path (that has a different final orientation) with shorter length,
which may shed some light to other related problems.

2 Shortest path to a point

A Greek mathematician Archimedes gave the following axioms on
the length of convex curves connecting two distinct points in the
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plane.
Lemma 2 For two distinct points p and g,

(i) The line segment from p to q is shorter than any other path
fromptoq.

(ii) For two convex paths from p to q, one inside the other, the
inside one is the shorter.

In this section we give a characterization of a path from an ini-
tial configuration to a final location such that the path is a shortest
among all paths with a prescribed curvature bound. We denote by y
a curvature-constrained path from s to a final location ¢. A subpath
of «y from a point z to another y is denoted by v(z, y).

Lemma 3 No path of type CCC is shortest.

Proof. Assume to the contrary that a shortest path v consists of
3 circular arcs. Considering the forward tangent of the path at ¢
as the orientation of the final configuration, v must be a Dubins
shortest path. Dubins [3] showed that the middle (intermediate)
arc Cy, of y has length > . This implics that we can always
draw a line segment from ¢ to a point p in the interior of Cp,
such that the segment is tangent to Cy, at p. We can replace the
subpath y(p, t) with the line segment pt and get a new C! path
with smaller length by Lemma 2 (i). (See Figure 1 (a).)

(a) (®) (©)

Figure 1: The cases when ¢ lies outside of two discs tangent to s.

From now on, and without loss of generality, we assume that the
orientation of s is upward vertical. We denote by Dy, (tesp. Dr)
the left (resp. right) disc tangent to s. We denote by R(zy) a
clockwise arc and by L{zy) a counterclockwise arc from z to y
of a unit circle through z and y. We also denote by R and L the
orientation types of circular arcs, if understood in the context.

We need a technical lemma to show Lemma 35, the first half of
Theorem 1.

Lemma 4 Givent ¢ (D U Dg), every shortest path of type SC,
CSC or CCC has the last arc of length at most .

959

Proof. Let «y be a shortest path of such a type whose last arc has
fength bigger than «, and let D be the unit disc of the last arc.
Since t € (D, U Dp), we can always slide D along « backward
to s until it stops intersecting ¢. There exists a Dubins’ shortest
path from s to ¢ with one of two tangents of D at ¢ such that it has
length smaller than .

Lemma 5 Givent & (D U DRg), a shortest path is of type CS.

Proof. Assume to the contrary that a shortest path <y is not of type
CS. Considering the forward tangent of «y at ¢ as the orientation of
the final configuration,  is a Dubins shortest path. From Lemma 3
«y is not of type CCC.

First consider the case that «y is of type either SL or LSL. Then
we can always draw a line through ¢ and tangent to Dy, at ¢ such
that L(sq) of Dy, followed by gt form a new C! path with smaller
length. The case that +y is of type either SR or RSR can be handled
symmetrically.

Now consider the case that v is of type CC, LSR or RSL. If
the first arc has length > m, we can get a new path with smaller
length as in the proof of Lemma 3. Assume now that the first
arc has length < «. Then - cannot intersect the half-line from s
downward vertical. Without loss of generality, we assume that
t lies in the left half-plane of the vertical line £ through s. By
Lemma 4, the last arc of + has length at most 7. Let 4’ be a
shortest path of type LS. If the first arc of -y is of type L, y and
~' overlap from s up to some point p on the boundary of Dy, as
in Figure 1 (b). Since two arcs of «y turn in opposite orientations,
the first arc of -y is longer than that of 4'. Therefore, the subpath
v'(p,t) is a line segment, and by Lemma 2 (i) the subpath ~(p, t)
has bigger length, which implies that 4’ is shorter. If the first
arc of v is of type R, -y may intersect £ and let p be the last
such intersection point of v, as in Figure 1 (c). By Lemma 2 (i),
|3B| < |v(s,p)|. Furthermore, p lies on the last arc of y such that
3p and y(pt) form a convex curve C. Therefore, C is an outside
curve of 4 and |y'| < |C| by Lemma 2 (ii). This completes the
proof that || < |v|.
We now consider the case that ¢ lies in the interior of two unit discs
tangent to s and show that any shortest path consists of two circular
arcs.

Lemma 6 Givent € (Dy U Dg), a path of type LSL (or RSR)
can always be shortened to a path of type SL (or SR).

Proof Let v be a path of type LSL consisting of an arc L(sa) of
Dy, and a segment ab followed by another arc L(bt) of a unit disc
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Figure 2: A path of type LSL (or RSR) can always be shortened
to a path of type SL (or SR).

D, as in Figure 2. Let D’ be a unit disc tangent to ¢ and a vertical
line through s at &', and let 4’ be a path of type SC consisting of a
line segment sb’ followed by an arc L(b't) of D’. Clearly, v’ is a
valid path with bounded curvature.

Consider the sum of arc lengths of each path - and ', which
is proportional the amount of changes in orientation along the
path. Then ~ has bigger arc length than 4/ by the length of

(tt’ ) of D', where t’ is the translation of t by addmg the vector
cc (Note that D’ is a translated copy of D by cc’.) Therefore,
[vi = | = {ab] + |L(tt")| — |sb|. Now consider the triangle
connecting the centers ¢, ¢ and ¢’ of the three discs Dy, D and
D’. Since D is a translated copy of Dy, by adding the vector cr¢,
jerel = |ab| Similarly, D' is Dp, + ch and fcz.¢'| = |sb/|. Since
[#/| < L(tt'), by triangle inequality, |ab| + |L(tt')} > [sb/|, which
shows that v is the shorter. The case that -y is of type RSR can be

handled symmetricaily.

Corollary 7 An LSL (or RSR) path can always be shortened to
another path of the same type with shorter first arc.

Proof Given two LSL paths from s to ¢, let L(sa) be the shorter
one of two first arcs. We set s to be the configuration with location
a and orientation of the counterclockwise tangent of Dy, at a.

Then it follows Lemma 6.

Lemma 8 Givent € (Dy, U Dg), a path of type SL (or SR) can
always be shortened to a path of type RSL (or LSR).

Proof. Let y be a path of type SL that starts with sb followed
by an arc L(bt) of disc D, and let ' be a path of type RSL that
starts with an arc R(sa’) of Dy followed by a line segment a'b ‘b
and another arc L(¥'t) of disc D’ as in Figure 3. Let b” be b + oo
Then two arcs L(bt) of D and L{b"t) ofl_): differ in length by
the length of L(tt') of D', where ¢’ is t + ¢c, as in the proof of
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Figure 3: A path of type SL (or SR) can always be shortened to a
path of type RSL (or LSR).

Lemma 6. Let p be the midpoint of sb, and let g be the midpoint
of a’t/. By Lemma 2 (ii), |5p| + |74 |R(sa)| + |a’q|.
If we double both. sides of the inequality, it shows
[s] + |L(tt")} > [sbl + (67| > |R(sa’)| + '] + |L(b'D")],
which implies that |y'| < |v]. The case that -y is of type SR can be
handled symmetrically.

Corollary 9 An RSL (or LSR) path can always be shortened to
another path of the same type with longer first arc.

Lemma 10 Givent € (D U Dg), a path of type RS (or LS) can
always be shortened to a path of type RL (or LR).

In conclusion, a shortest path is either of type CS or type CC (LR
or RL) according to the location of t, which implies Theorem 1.
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