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ABSTRACT

Most existing studies on time—dependent networks have been focused on finding a mini—
mum delay path given a departure time at the origin. There, however, frequently happens a
situation where users can select any departure time in a certain time interval and want to
spend as little time as possible on traveling the networks. In that case, the delay spent on
traveling networks depends on not only paths but also the actual departure time at the
origin. In this paper, we propose a new problem in time—dependent networks whose ob—
jective is to find an optimal departure time given possible departure time interval at the
origin. From the optimal departure time, we can obtain a path with minimum delay among
all paths for possible departure times at the origin. In addition, we present an algorithm for
finding an optimal departure time by enumerating trees which remain shortest path tree for
a certain time interval.
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1. INTRODUCTION

A time-dependent network denotes the network where the delays of edges change
with time. The fluctuation of arc delays is normally caused by time-varying con-
gestion, which happens in most real road networks and communication networks.
The shortest path problem in time dependent network has recently been one of
the main issues in route planning problem since the development of intelligent
transportation systems([14]). In this paper, the delay of arcs has the same mean-
ing with the length of arcs, and thus shortest path and minimum delay path will
be used interchangeably.

Cooke and Hasley [13] first dealt with a shortest path algorithm in time-
dependent networks, and proposed a label correcting algorithm which was ex-
tended from Bellman’s algorithm [2]. Orda and Rom [7] extended Dijkstra’s algo-
rithm when unrestricted waiting at any node is allowed, and suggested a label
correcting algorithm when no waiting is allowed at any node. Ziliaskopoulos and
Mahmassani [12] introduced DEQUE list for a label correcting algorithm for fin-
ing a minimum delay path. Kaufman and Smith [4] presented a condition under
which FIFO rule holds in time-dependent networks, and showed that if a certain
condition is satisfied at all nodes, label setting or label correcting algorithm can
handle time-dependent shortest route problem without additional computation.
Lee [5] presented a branch and bound algorithm to solve time-dependent shortest
route problem where FIFO rules does not hold. Sung et al. [9] proposed a new
time-dependent network model where the flow speed of each link depends on the
time interval, and presented label setting algorithm modified from Dijkstra’s al-
gorithm.

Most existing researches on time-dependent networks have been concerned
with finding a shortest path given a departure time at the origin or an arrival
time at the destination. However, there frequently happens the situation where
users can select any departure time in a certain time interval and want to spend
as little time as possible on traveling the networks. Since there exists a shortest
path for each departure time at the origin, users need to find a shortest path
which has minimum length among all shortest paths for possible departure times
at the origin. That is, both an optimal departure time and the corresponding
shortest path should be determined. For example, a truck driver can start from
the origin at 9 o’clock through 14 o’clock. He wants to start from the origin at the
time which leads to minimum delay spent on traveling the network. Not only
shortest paths but also an optimal departure time are important to the truck
driver. Also, similar situations happen in communication network where users
want to send a bulk of data in a certain time interval. In this case, user will try to
know when they start to transmit the data in order that transmission time can be
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minimized. To solve these problems, an intuitive approach is to solve shortest
paths at every available departure time in a time interval and select the optimal
departure time and the corresponding shortest path. For a large real network and
reasonably precise departure time increment, this approach runs much too long to
be useful in practice. Therefore, some dynamic approach for determining mini-
mum delay path is needed.

In this paper, we propose a new problem which is to find an optimal departu-
re time in a time-dependent network given departure time intervals. Throughout
the paper, we assume that unrestricted waiting at every node including the origin
is allowed. Without the assumption, finding a shortest path given a departure
time at the origin is known to be NP-hard([7]). In addition, we assume that the
delay function of each arc is piecewise linear within each time interval. This im-
plies that the slope of the delay function is constant within an time interval. The
assumption does not cause the great loss of generality because in practical envi-
ronments the information on the delay of an arc is obtained and updated at every
unit time. In fact, due to the modern technologies, intelligent transportation sys-
tems have one center that monitors and controls the overall road network traffic
status, thereby being able to retrieve traffic data for a certain time interval.

A simple approach which one might devise to solve the proposed problem is
as follows: First, find shortest paths for all departure time which can be enumer-
ated by increasing some number of time units to the earliest departure time at
the origin, and then select the shortest path which has minimum length among
all shortest paths. One can expect presumably that the departure time of the se-
lected shortest path is an optimal departure time. However, this simple approach
might fail to find an optimal departure time. For an illustrative example, we con-
sider a simple network composed of three nodes and two arcs as displayed in Fig-
ure 1, and the delays of arc (1, 2) and (2, 3) are given in Table 1.

O—(—)

Figure 1. An example network

Table 1. Delay of arcs

arc delay of arc for each time interval
0, 1) 11, 2) 2, 3) [3,4) 4, 5) [5, 6) 6, 7)
1, 2) 3.5 4.5 5 5 5 4 4
(2,3) 4 4 4 3 2.8 3 3

Suppose that departure at the origin can be made between time 0 and time 2.
For departure time z=0,1,2 at the origin, the length of shortest paths is shown in

Table 2.
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Table 2. The length of shortest paths for each departure time at the origin

arc (1, 2) arc (2, 3) Arrival Total
Available de- | Actual de- | Delay |Available depar-| Actual depar- | Delay time delay
_parture time [parture time ture time ture time
0 0 35 3.5 3.5 3 6.5 6.5
1 1 4.5 5.5 5.5 3 8.5 7.5
2 2 5 7 7 3 10 8
0.6 0.6 3.5 4.1 4.1 2.8 6.9 6.3

In Table 2, the first column, ‘available departure time’ means the earliest
time when departing from the origin is possible. But available departure time
may differ from the actual departure time when departure from a node is actually
made because waiting at a node can delay the departure. From Table 2, we know
that minimum delay is achieved when the departure time at the origin is 0.6.
This implies that we might fail to find an optimal departure time by solving
shortest path problems defined for each departure time ¢=0,1,2..- at the origin,

and consequently the simple approach might fail to solve the proposed problem.
To find an optimal departure time, we need to solve shortest path problems for all
possible departure times at the origin. In this paper, we propose an efficient algo-
rithm for finding shortest paths for all possible departure time at the origin. The
proposed algorithm is based on a parametric shortest path algorithm which can
solve the shortest path problem in time-dependent networks where the delay of
arcs is piecewise linear function of time.

The organization of the paper is as follows: In the next section, a parametric
shortest path algorithm for time-dependent networks is developed. In Section 3,
using the parametric shortest path algorithm, we propose an algorithm for find-
ing an optimal departure time. An example problem is presented in Section 4, and
finally some conclusions are presented in Section 5.

2. PARAMETRIC SHORTEST PATH PROBLEM

We consider the parametric shortest path problem in a directed network
G =(N,E),with N={1,2,-,n} being the set of nodes, E c NxN the set of arcs.

Let c(e) denote the length of arc ¢ and &§(e) be the rate of change in the length
of arc e. Throughout the paper, we assume that c(e) has a positive value for all
ec E. For nonnegative real parameter A, let c;(e) denote the parameterized

length of arc e where c,(e) = c(e) + A5(e) . Let node 1 and node n be the origin and
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the destination of the shortest path problem, respectively. Let ¢,(p) denote the
length of path where ¢;(p)=Y .., (c(e)+Ad(e)) . In particular, let ¢(p) denote the

length of path when 2=0, that is, c(p)=Y ROR Let 8(p) denote the rate of

eE

change in the length of path p where §(p)= Zeepa(e). Let P, denote the set

of paths from node 1 to node i. For a given fixed 1, a path p* from 1 to i is
called a shortest path if ¢,(p*)=min,pc;(p). A shortest path p" from 1 to i is

called an effective shortest path from 1 to i if 6(p") < 8(p) where p is any shortest
path from 1 to i. Given a set E of arcs, let F(i) denote the set of arcs emanating
from node i. A simple and nice property of effective shortest path is that every
subpath of an effective shortest path is also an effective shortest path. From this
property, we can develop an algorithm for finding an effective shortest path tree
T such that every path from 1 to i in T is an effective shortest path when A =0,
The algorithm can be obtained by a modified Dijkstra’s algorithm.

Algorithm 1. Find_EST (N, E,¢,d)

0 begin

1 S=¢,S=N

2 d(i) =o0,y(i) = for eachnode ie N

3 d(1)=0,y(1)=0 and pred(1)=0

4 while |{S|<n do

5 begin

6 let i€ S be anode for which d() =min{d(j): je S}
7 S=Suli}, S=5-{i)

8 for each arc (i,j)e F(i)do

9 if  d(j)>d(@@)+c(i,j) then

10 d(j)=d@) +c(i,j)

11 y(j)=y@)+ 6, ))

12 pred(j) =i

13 elseif d(j)=d@)+c(i,j) and y(j) > v(@i)+6(, ) then
14 Y() =@ +8G, )

15 pred(j) =i

16 end if

17 end for

18 end

19 end
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Lemma 2.1. Suppose that c(i,j) >0 for all (i,j)e E and T is a shortest path tree

constructed by Algorithm 1. Then, every path in T is an effective shortest path for
A=0.

Proof. Algorithm 1 maintains distance label d(i) and selects the next permanent
nodes in the same manner as Dijkstra’s algorithm, which implies that T obtained
by Algorithm 1 is also a shortest path tree. Therefore, we only show that for every
path p from 1 to i in T, the rate of change, 8(p), is not greater than those of the

other shortest paths from 1 to i;. Suppose there exists an effective shortest path g
from 1 to i which has at least one non-tree arc. Let (u,v) be the first non-tree arc

of g. Since the length of each arc is positive, node v must be selected as perma-
nently labeled node before node v is selected. When u is selected, every arc ema-
nating from u is considered by line 8~17. Thus, the permanent value of &(v) is

less than or equal to 6(g,) where g, denotes the subpath of q from 1 to v. Let
p, be the path from 1 to v in T. This implies that g', which is obtained by re-
placing the subpath ¢, with p,, is also an effective shortest path. By repeating

the same argument, any path in 7 must be an effective shortest path. m

Given an effective shortest path tree T for A =0, the range of A, with which

T remains an effective shortest path tree is calculated by the following:

Theorem 2.1. Let T denote an effective shortest path tree when A =0. Let also p;

denote a unique path from 1toiinT. Let A and A denote

_ c(p,)+c(u,w)-c(p,)
= wwkxc, 8(p,)~6(p,)—6(u,v)
T = min c(p,)+c(u,v)—c(p,)

w,vkC, 8(p,)~d8(p,)—6(u,v)

where

C, ={u,v): (w,v)e E-T and 6(p,) < 6(p,)+6(u,v)}
C, ={u,v): (w,v)e E-T and §(p,) > 5(p,)+6(u,v)}

If A<0, the range A within which T remains effective shortest path tree is

A<A< 2. Otherwise, the range A is 0< A< A.In addition, A is positive.
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Proof. Let C be the set of non-tree arcs, that is, C=E -T . Let (u,v) be an arc
in C, and let p, and p, be the shortest path in T from 1 to u and from 1 to v.

The necessary and sufficient condition for T to be a shortest path tree is that
c(p,)se(p,)+c(w,v) for all (u,v)eC. Also, since d(e) is constant for all ec E

and T is a shortest path tree for A =0, T remains a shortest path tree if and only
if ¢;(p,)<e,(p,)+c;(u,v) for each (u,v)eC and Ae [/_I,Z] . Consequently, the
following inequality must hold for all (u,v)e C:

c(u,v)+c,(p,)—c,;(p,)=0
= c(u,v) + A8(u,v) +c(p,) + Ad(p,) - (c(p,) + A6(p,) 20 (2.1)
= c(u,v) +c(p,) —c(p,) - M8(p,) - 8(p, ) - §(u,v)) 20

Since T is an effective shortest path tree for A =0, c(u,v)+c(p,)~c(p,)=>0 for

each (u,v)e C.The range of A can be found as follows:

(a) In case that 6(p,)-6(p,) -6, v)=0,
Since c(u,v)+c(p,)—c(p,)20 by assumption, inequality (2.1) holds trivially

for any value of 4.

(b) In case that (u,v)e C;, we obtain

e(p,)+clu,v)-c(p,)

> =1 2.2
(unieb, 6(p,)-8(p,)-6ww) — 2

(c) In case that (u,v)e Cy, we have
c(py) +ew,) —e(py) _ > (2.3)

T wpeC, 8(p,)-8(p,) - 8(u,v)

Therefore, the range of A, within which T remains an shortest path tree is

ASAZ A.In addition, if no new shortest path from the origin to any other node is

formed when A changes, T remains an effective shortest path tree. If a new
shortest path from 1 to i is formed for a certain A, then the rate of change in the
length of a new shortest path is always less than that of the shortest path from 1
to i in 7. This implies that the range of A within which T remains an effective

shortest path tree is /_1</l</_1 when A <0.If A=0,therangeof Tis 0<A<A.
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Next, we show that A has a positive value. If c(u,v)+c(p,)-c(p,)>0 for all

(u,v)e C, the positivity of 2 trivially holds. Suppose that c(u,v)+c(p,)-c(p,) is
zero. Then, by the definition of effective shortest path tree, it follows that
o(u,v)+6(p,)28(p,). If 8(u,v)+6(p,)=6(p,), it corresponds to case (a). If

o(u,v)+6(p,)>d6(p,), then (u,v)eC;. Therefore, for every arc(u,v)eC,,

c(u,v) +c(p,) <c(p,), which means that 2 is positive. B

Note that if C; =¢ then A =-o.The range of A obtained by Theorem 2.1
might include both positive and negative values. In our proposed algorithm, how-
ever, we are only concerned about the range of time interval within which a given
tree T remains an effective shortest path when time A elapses. Therefore, only
the nonnegative part of the range of A given by Theorem 2.1 will be used in this
paper.

When A has a value equal to or greater than ) , T does not remain an effec-
tive shortest path tree any more. To obtain another effective shortest path tree
T' for A>A, some arcs in T have to be replaced by some other arcs in E -T .

The candidate arcs to enter 7' are ones whose ratio in inequality (2.3) equals A.

That is, T"' can be constructed by considering only the arcs in T and C * where

e(p,) +clu,w)—c(p,)
6(p,) - 6(p,)—6(u,v)

C" ={(uw)e Cy| =} (2.4)

Let E'=T UC" and c'(e) =c(e)+ A5(e) . Note that we use T to denote the set
of arcs included in itself, which will not be confusing in the context although it is
an abuse of notations. Then, 7' is found by using Find_EST() in Algorithm 1
whose input parameter is (IV,E',c',8). In most practical situations, |E'| is ex-
pected to be much less than |E |. This means that updating T into 7" can be
performed with far less computational effort than finding an effective shortest

path tree T from scratch. In addition, any path constructed by the arcsin E' with
its length being given by ¢’ is a shortest path. In fact, the reduced cost of all the
arcs E'is zero, and thus every path formed by E' is a shortest path. Using the
results, we can avoid the calculation of distances d(i) in Algorithm Find_EST(),
and only consider the rate of change, y(i).
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3. FINDING A MINIMUM DELAY PATH

Consider a time-dependent directed network G =(N, E) where the delay func-
tion of arc (i,j)e E is given by d;;(t). We assume that d;;() is a positive piece-
wise linear and right continuous function of time ¢>0. If [t, E] is one of time in-
tervals where d;;(¢) is linear, ¢ and ¢ will be called the left and right breakpoint

of the interval.
Consider another function Dij(t) which is derived from dij(t) as follows:

D;(t) =inf(r +d;;(t + 7)) 3.1)
20

That is, D,(¢) represents the minimum delay time to go through arc (i,j) at
time t. Note that since unrestricted waiting at any node is allowed, D;(t) might

include waiting time at node { when the minimum delay in equation (3.1) is
achieved for 7 >0. Also, since dj;(t) is assumed to be piecewise linear and right-

continuous, Dj;(¢) is well defined for every ¢>0([7]), and can be easily deter-
mined. Another feature we have to be cautious about is that D,;(¢) has many T
or no 7 such that T*+d,-j(t+r*)=Dij(t) for some t. For example, suppose
d;j¢t)=a +bt for te[g,i). If the slope b of d;(t) is equal to -1, then any
Telt, Z) leads to the minimum delay of arc (i,j). Moreover, if the slope of d,;(¢)

is less than -1, then no 7€ [g,z;) leads to the minimum delay of arc (i,j). As

t +7 approaches to the right breakpoint of the interval, (z +d;(¢+7)) converges
to E-7)+a+ @+ (£ -7))b. Since d;(t) is not continuous at Z, the minimum delay

can not be achieved at any time in [z, t). If we assume that the slope of d;(¢) is

greater than —1 for all (i,j)e E and ¢>0, we can avoid this problem. Unfortu-

nately, the assumption will make our algorithm applicable to more restrictive
environment. Thus, we don’t adopt the assumption, and circumvent the above
problem by introducing a sufficiently small positive constant ¢ . If the minimum

delay of equation (3.1) is achieved at the right breakpoint t of D;(¢) where

D;;(¢) is discontinuous, then t—¢ will denote the time which is infinitely close to
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£. Also, t—¢ will be used for denoting an optimal departure time which is in-
finitely close to the right breakpoint of a time interval.
Despite of the intricacy mentioned above, D;;(¢) has a property similar to

dij(t) as follows:

Lemma 3.1. For each (i,j)€ E, Dy(t) is a positive piecewise linear and right-

continuous function.

Proof. The positivity of D,(¢) directly follows from the definition. If we show
that D;(¢) is piecewise linear for some interval [¢,t+A], the right-continuity of
Dl-j(t) is also directly obtained. Thus, it is sufficient to show that Dij(t) is a
piecewise linear function. Let #, be an arbitrary time such that D,(t,)=
inf {7t +d;;(¢, +7)}. Since Dy(#,) is the sum of waiting time at node i and trav-
eling time through arc (i,), let 7~ denote the waiting time of D;(t,). In case of
many 7 which leads to Dy(ty) = T +d;(ty + "), 7" is uniquely chosen such that

* o e *
7 1is the minimum among all 7 .

(a) In case that 7" >0.

Let A be a positive number such that A <7". It follows that

Dty +A) = irrzlg(r +dy(ty + A +7))

=min{ inf (7+d;{t; +A+1)), ian(r +dy(ty +A+7))

T<7 -A 27 —
=min{ inf (7 +d;(t, +7)) - A, inf(z +d;;(¢; +7)) - A}
A<t<t 727

Therefore, Dj;(¢) is linear in time interval [y, + 7'].

(b) In case that 7" =0.
Then, it follows that for any A7 >0,

AT+ dL_](tO + AT) > dl](to)
- di(to + AAT) —dy(ty) - (3.2)
T
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This implies that any waiting at node i from time £, cannot reduce the delay
of arc (i,j). Let AT>0 be a constant such that d;(¢) is linear in time inter-

val [ty,2, + At]. Therefore, we have that for any Ate [O,E]

Dyj(ty + At) =inf(z +dylt + At +7)) = dylty + A) (3.3)

In addition, we obtain from inequality (3.2) that
djj(ty +At) = dy(ty) + 6AL, for any At e [0,A7]
where 8 > -1. Therefore, the equation (3.3) can be rewritten as

Dty + At) =d;;(ty) +6A¢, for any Ate [0,A7]
which implies that D,;(¢) is linear in [£,%, + At]. m

By using D;;(¢) instead of dj;(¢), we can be free from any nuisance caused by
considering unrestricted waiting time at nodes. In addition, the use of D,;() over
dij(t) makes FIFO rule hold automatically in time-dependent networks. Hence,
we are only concerned with D;;(¢) from now on.

Let p be a path from node i to j with p=( =i,,---,i; =j). Note that [ is
greater than or equal to 1. Let p; denote the subpath of p from i to i, where
r=1,--,l. For each subpath p; of p, we define A,(p; ), D/(p;) and 6,(p;)

recursively as follows:

Alp, )= {t’ . Ur=0 (3.4)
’ oy )+ D (A(py ), if =11

D,(p; )={ ’ o ir=0 (3.5)
. t(pi,_, )+Di,_, i (At(pi,_‘ ), ifr=1,---,1

8,(p; )= {D'i" i ’ i'f r=0 (3.6)
’ 6, (p; )+D|i,<,,i, (At(Pi,_‘ ))'5t(pi,_, ) ifr=2,--,1

A,(p; ) represents the arrival time to node i, when the available departure
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time at node i is £. D,(p; ) represents the total sum of delay through all arcs in
p; when the available departure time at node i is ¢. Also, ,(p; ) represents the
rate of change in the delay of path p;, . We can know that by the definition
D,(p;) is a minimum delay time of a path p=(i, ,i.) given an available
starting time ¢ at node i, and &,(p; ) is the derivative of D,(p; ). By the defini-
tion, A,(p;)=t+D/(p;) for r=1,--,I. Note that D';(¢) means the right-
derivative of D;(t). Since D;(¢) is piecewise linear right-continuous, D,(p; ),
A,(p;) and 6,(p; ) are well-defined.

In the parametric shortest path problem in Section 2 where arcs’ length is
constant, the length of a shortest path is expressed as the sum of parameterized
length of arcs. We can derive a similar result for time-dependent networks as fol-
lows:

Theorem 3.1. Let p =i =iy,---,{; = j) be a path from node i to j. Let t, be the

available starting time at node i. Suppose that for At >0, each delay function

D, ; (@) islinear in time interval [A, (p; ),A; ,n(D; )] where r=0,-,1-1. Then,

bk
Dt0+At(p) = Dto (p)+At- ato (p), At0+At(p) = Ato(p) +AL- 61‘0 (p).

Proof. We show that the following equations hold for each subpath of p:

Dt0+M(pir)=Dt0(pi,)+At-5t0(pi,) r=1,-.,1 3.7
A (D) =4, (p )+ AL, (p;), r=1,..1 (3.8)
If r=1, equation (3.7) holds obviously. Suppose that equation (3.7) holds for all

r<k-1 where k=2. This means that equation (3.8) also holds for all r<k-1
since A,(p,)=t+D,(p,). Then, we get

Dto+At(pik )=D, +At(pi,,_1 )+ D; (A n(pi )
= Dt‘) (pik—l ) + Atato (pikvl ) + Dil!—l ’ik (Ato’(pilvl )) + AtDlik—l ’ik (AtO (pik—l ))6t0 (pik—l )
= Dto (pik ) + At5to (pil. ).

Since A, (p,) =ty +D, (p,), equation (3.8) also holds for r=%4. m



ON FINDING AN OPTIMAL DEPARTURE TIME IN TIME-DEPENDENT NETWORKS 65

Theorem 3.1 holds in time interval where each arc’s minimum delay function
is linear. The interval where Theorem 3.1 holds can be calculated by the following
lemma:

Lemma 3.2. Let p=(i=iy,-,i; =j) be a path from node i to j. Let t, be the

avatlable starting time at node i. Then, D,  ,(p) is linear for 0<At <i_5i, where

Ei‘ is defined recursively as follows:
Zil = fl ~t0
- - -4, (p,4)
ti, :min ti,_l ,Eﬁ_?r_l_ ST = 2,...’l
%, (pi.,)

where f, represents the smallest breakpoint of D, ; () such that 24, (p).

Proof. We show the lemma by mathematical induction. If r = 1, we obtain the
following equation:

D, ,n(p1) =D, ; (& +At) (3.9)
Since D; ; (£, +At) is linear in time interval [{,,fi] where f; is the smallest
breakpoint of D; ; (¢) with ¢>¢,. Hence, D, ,,(p,) is linear in time interval

[ty,ty + At] where At =f —t, = z,:il .If r =2, we obtain that

D, ip(P2) =D, ,a(p)+D; ; (A 1a(P1)) (3.10)

The first term of equation (3.10) is linear for 0 <At < Eil . For its second term to be

linear, the following inequality should hold:
A (PSS (3.11)

where f, is the smallest breakpoint of D, ; ({)such that t>A, ,,(p;). Since
Ay in(D) =4, (p)+ A5, (p) for 0<A¢ Si?il , equality (3.11) can be rewritten

into

f2 — A, (py)
8;,(p1)

At < (3.12)
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Therefore, D, ,5(ps) is linear for 0<At< EiQ . Suppose that the lemma holds for
all r<Fk. By the definition of D,(p,),

D, 0(Pria) =Ds as(pp)+D; ; (A ine(Dp)) (3.13)

By the similar arguments, the following equality should hold for the second term
of equation (3.13) to be linear: for At <¢, ,

At0+At(pk)$ fen
& A, () + 486, (pp)) S frn
f}e+1 _Ato (pk)

s AL
6t0 (pe)

’

where f,,, is the smallest breakpoint of D, ; (t) such that t2A, ,,(py).

Therefore, D, ,p(pg.q1) islinear for 0< At < Eim .|

We now discuss how to apply the parametric shortest path algorithm to find
shortest paths for all departure time at the origin. First, the method to find an
effective shortest path tree in time-dependent networks is needed. For this, we
use Algorithm 1 in Section 2 with some modifications. Suppose that the available
departure time at the origin is ¢;. To find an effective shortest path tree in time

dependent networks, the calculations of d(i)+c(i,j) and y(i)+8(i,j) need to be

modified as follows:

d@)+c(i,j) — d@)+D; (¢ +d@)) (3.14)
Dli,j(to +d(i)) , ifi=1

.15
(@) + D' ;¢ +d@Dy(E) , otherwise (8.15)

The modified Find_EST() will be referred to as Find_EST TD(). Label d(i)
stores the minimum delay time of a path from the origin to node i, and ¥(i) con-

tains the rate of change in the minimum delay time of the corresponding path.
The arrival time to node i is easily calculated by adding ¢, to d(i). Note that

D; j(d(i)) and D’; j (d(@)) depend on d(i), and thus their values are not deter-

mined until d(i) is known.
Next, we propose the way how to calculate the range of £ within which a given
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effective shortest path tree remains as it is. The range of ¢ can be calculated by
modifying Theorem 2.1.

Theorem 3.2. Let T, be an effective shortest path tree given available departure
time t, atthe origin. Suppose that the minimum delay function of every path from
the origin to the other nodes is linear for t, € [ty,t, +¢). For any(uy)e E, p, and

p, denote the shortest paths in T, . Then, T, remains an effective shortest path

tree for time interval [t,,t, + At) where At is defined as follows:

_ _ D D -D
At=min[t, min t,(Pu)+ Duy (44, (P, )~ D, (P,) \ (3.16)

(u,0)eC 5t0(pv ) - 5,50 (p,)-D'",, (At0 (p, ))6t0 (p,)

where  C={u)|@w,v)e E-T, and §, (p,)>6, (p,)+D',, (A (p, )5, (p,)}. In
addition, At is strictly positive.

Proof. By the definition of A,, D, and §, in equations (3.4)~(3.6) and Theorem
3.1, D, (p,), D, (p,) and D, (A, (p,)) correspond to c(p,),c(p,) and c(u,v),
respectively. Similarly, 8, (p,), 6, (p,) and D',, (A, (p,)d,(p,) correspond to
6(p,), 6(p,) and &(u,v), respectively. Therefore, the theorem follows directly

from Theorem 2.1. m

In Theorem 3.2, we assume that the minimum delay function of every path
from the origin to the other nodes is linear when available departure time ¢, at

the origin belongs to time interval [z,,¢, +1). To calculate ¢ using Lemma 3.2,

Lemma 3.2 must be applied to every path in T,, and also every path constructed
by concatenating a path in T, and one non-tree arc. A path in T, will be called

a tree path and a path which is formed by concatenating a tree path and one non-
tree arc will be called a extended path.

Finally, updating T into another effective shortest path tree 7" is similar to
updating T in Section 2. The candidate arcs to enter T"' are ones whose ratio in

equation (3.16) equals A .If At in equation (3.16) is equal to t, it means that a

new effective shortest path tree need to be found so that the length of all paths
can be expressed as linear functions for another time interval. On the other hand,
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if At in equation (3.16) is less than E, the candidate arcs to enter 7" belongs to

the following set of arcs:

C"'={(uwv)eE-T| -2

Dto(pu)+Du,v(Ato(pu))_Dt0(pv) s
(Sto (pu )- 6to (pu )- Dlu,u (Ato (pu ))5t0 (pu )

That is, T' can be constructed by considering only the arcs in T and C~.

T" is also found by using Find_ EST _TD().

We present an algorithm for finding an optimal departure time and a mini-

mum delay path given available departure time interval [z, 7l.

Algorithm 2, Finding an optimal departure time

begin

1 d « oo

2 Let ¢ be a sufficiently small positive number,

3 Find an effective shortest path tree T with time t, =1.
4 {75

5 while(t,<7)

6  begin

7 Find a time interval [tO,E) where the lengths of all paths in P are linear.
8 while (¢, <t)

9 begin

10 compute At using equation (3.16).

11 At « min(z, At);

12 d =min, < <4 40 (Ds, (o) + 76 (Py))

13 if d<d”, then

14 d" «d

15 if At=¢t and d" =(D, (p,)+(t, +A)S, (p,))
16 t" e (ty + At -€);

17 else

18 th T*;

19 end if
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20 P <Dy

21 end if

22 ty 1ty +AL;

23 Find T' using Find_EST_TD() with time ¢, .
24 T T

25 end

26 end

end

In Algorithm 2, P means the set of all tree paths and extended paths. In line
18, 7" is from the equation d" =D, ( pn)+T*5to(pn)' After Algorithm 2 termi-

nates, ¢ has an optimal departure time, p’ stores the minimum delay path,

and d” has the delay of P’ . The computational amount of Algorithm 2 is propor-

tional with the number of effective shortest path tree produced by Algorithm 2. If
the number of effective shortest- path tree found by Algorithm 2 is F, then the
complexity of Algorithm 2 is O(F xS(|N |,| E |)) where S(|N |,|E|) represents
the complexity of a shortest path algorithm for G =(N,E).

4. EXAMPLES

For the illustrative purpose, let us consider the following network. We assume
that the origin is 1 and the destination is 6.

Figure 2. An example network

As given by Table 3, the travel time of each arc is piecewise linear. The fig-
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ures in parentheses of Table 3 represent the rate of change in each arc’s delay.
The available starting time interval is {0, 4).

Table 3. Arc travel time

Delay of arc for each time interval

Are [0, 1) (1,2 2,3) (3, 4) i, 5)

(1, 2) 0.2( 0.5) 0.7( 0.2) 0.9(-0.7) 0.2(-0.2) 0.4(0.1)
(1,3 0.4(0.1) 0.5(-0.4) 0.1(0.2) 0.3(-0.1) 0.2( 0.2)
1,4) 0.5(0.1) 0.6(0.1) 0.7( 0.9) 1.6(-0.5) 1.1(0.1)
(2, 5) 0.4( 0.3) 0.7( 0.5) 1.2(-0.8) 0.4( 0.1) 0.5( 0.3)
3,5) 0.3(0.1) 0.4(-0.2) 0.2(0.4) 0.6(-0.2) 0.4( 0.2)
4,5) 0.4(0.1) 0.5(0.1) 0.6( 0.1) 0.7(0.4) 1.1 0.2)
(5, 6) 0.2(0.2) 0.4(-0.3) 0.1(0.1) 0.2( 0.4) 0.6(0.4)

The arrival time, rate of change in delay, the total delay, and linear interval
of the paths in the effective shortest path tree and the extended paths are pre-
sented in Table 4.

Table 4. lteration 1

Path Departure time Arrival time 5to ( D; ) Dto ( D; ) Linear interval
1-2 0 0.2 0.5 0.2 [0,1)
1-2-5 0 0.6 0.65 0.6 [0,1)
1-2-5-6 0 0.8 0.78 0.8 [0,1)
1-3 0 0.4 0.1 0.4 [0,1)
1-3-5 0 0.7 0.11 0.7 [0,1)
1-3-5-6 0 0.9 0.132 0.9 [0,1)
14 0 0.5 0.1 0.5 [0,1)
1-4-5 0 0.9 0.11 0.9 [0,1)
1-4-5-6 0 1.1 0.132 1.1 {0,1)

The effective shortest path at time ¢, =0 is 1-2-5-6 and its delay is 0.8.

Algorithm 2 sets ¢* =0.
For the sake of simplicity, let m,, denote

_ Dto(pu)+Du,v(Ato(pu))—Dto(pu)
w8 ()-8, (p,)-D',, (A (p,)6, ()

T
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where (u,v) is a non-tree arc. To find the time interval where T; remains effec-

tive shortest path tree, At is calculated by using equation (3.16) as follows.
At = min{4,745(=0.185185185), 7,5 (= 0.555555)} = 0.185185185

Note that the non-tree arcs of T are (3,5) and (4,5). Hence, the next depar-
ture time to be considered is ¢, = 0.185185185, and arc (3,5) comes into the effec-

tive shortest path tree.
The ‘departure time’, ‘arrival time’, 5t0 ), Dt0 (-), and ‘linear time interval’ at

t, =0.185185185 are given by Table 5.

Table 5. lteration 2

Path Departure time Arrival time 6to ( D; ) Dto ( D; ) Linear interval
1-2 0.185185185 0477777778 0.5 0.292592593  [0.185185185,1)
1-2-5 0.185185185 1.416666666 0.65 1.231481481 [0.185185185,1)
1-2-5-6 0.185185185 1.691666666 0.555 1.506481481 [0.185185185,1)
1-3 0.185185185 0.603703704 0.1 0.418518519 [0.185185185,1)
1-3-5 0.185185185 0.882962963 0.11 0.697777778 [0.185185185,1)
1-3-5-6 0.185185185 1.018074074 0.143 0.832888889  [0.185185185,1)
14 0.185185185 0.703703704 0.1 0.518518519  [0.185185185,1)
1-4-5 0.185185185 1.274074074 0.11 1.088888889  [0.185185185,1)
1-4-5-6 0.185185185 1.591851852 0.077 1.406666667  [0.185185185,1)

The effective shortest path at time ¢, =0.185185185 is 1-3-5-6, and its

delay is 0.832889. The non-tree arcs are (2,5) and (4,5), and thus At is calculated
as follows:

At =min{4, 7,5(=1.28102x10'7)} = 4

In the above equation, we do not consider 7,5 because my; =-0.255829904

means the waiting time earlier than 0.185185185. Although the minimum value
in the above equation is 4, path 1-3-5-6 continues to be effective shortest
path until time #; =1 since the linear interval is [0,1). Therefore, the next depar-

ture time to be considered is ¢, =1 and the ‘departure time’, ‘arrival time’, 8, (),

D, (), and ‘linear time interval’ at ¢, =1 are given by Table 6.
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Table 6. Iteration 3

Path Departure time  Arrival time 5t0 (p;) Dt0 (p;) Linear interval
1-2 1 1.7 0.7 0.7 [1,2)
1-2-5 1 2.75 1.05 1.75 1,2)
1-2-5-6 1 2.925 1.155 1.925 [1,2)

1-3 1 1.5 0.5 0.5 [1,2)
1-3-5 1 1.8 0.4 0.8 [1,2)
1-3-5-6 1 1.96 0.28 0.96 [1,2)
i4 1 1.6 0.6 0.6 [1,2)
1-4-5 1 2.16 0.66 1.16 [1,2)
1-4-5-6 1 2.276 0.726 1.276 {1,2)

The effective shortest path at time ¢, =1 is 1-3~5-6, and its delay is 0.96.

The non-tree arcs are (2,5) and (4,5), and thus At is calculated as follows:
At = min{4} = 4

Although the minimum value in the above equation is 4, the tree continues to
be effective shortest path tree until ¢, =2 by linearity of the path. Therefore, the

next departure time to be considered is #, =2 and the ‘departure time’, ‘arrival

time’, &, (), D, (), and linear time interval’ at ¢, =2 are shown in Table 7. The
effective shortest path at time £, =2 is 1-3-5-6 and its delay is 0.474. Conse-

quently, ¢ is set to 2.

Table 7. lteration 4

Path Departure time Arrival time 5t0 ( D; ) Dt0 ( p; ) Linear interval
1-2 2 2.9 -0.7 0.9 [2,3)
1-2-5 2 4.82 -0.14 2.82 [2,3)
1-2-5-6 2 5.748 -0.196 3.748 12,3)

1-3 2 2.1 0.2 0.1 2,3)
1-3-5 2 2.34 0.28 0.34 [2,3)
1-3-5-6 2 2.474 0.308 0.474 [2,3)
14 2 2.7 0.9 0.7 [2,3)
1-4-5 2 3.37 0.99 1.37 2,3)
1-4-5-6 2 3.718 1.386 1.718 2,3)
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The non-tree arcs are (2,5) and (4,5), and thus At is caleulated as follows:

At = min{4,3.285714286} = 3.285714286

Although the minimum value in the above equation is 3.285714286, the cur-
rent tree continues to be effective shortest tree until £, =3 by linearity of the

path. Therefore, the next departure time to be considered is ¢, =3, and the ‘de-

parture time’, ‘arrival time’, 6t0(-) , Dto (), and ‘linear time interval’ at ¢, =3 are

as Table 8.
Table 8. lteration 5
Path Departure time  Arrival time 6t0 (p;) D t, (p;) Linear interval
1-2 3 3.2 -0.7 0.2 [3,4)
125 3 3.62 -0.77 0.62 [3,4)
1-2-5-6 3 4.068 -1.078 1.068 [3,4)
1-3 3 3.3 0.2 0.3 [3,4)
1-3-5 3 3.84 0.16 0.84 [8,4)
1-3-5-6 3 4.376 0.224 1.376 [3,4)
14 3 4.6 0.9 1.6 {3,4)
1-4-5 3 5.82 1.08 2.82 [3,4)
14-5-6 3 7.148 1.512 4.148 (3,4)

The effective shortest path at time £, =3 is 1-2-5-6 and its delay time is

1.068. The non-tree arcs are (3,5) and (4,5), and thus At is calculated as follows:
At = min{4} =4

Therefore, Algorithm 2 will stop. The optimal departure time is ¢ =2, and
the corresponding minimum delay path is 1-3-5-6 with minimum delay of
0.474. The effective shortest path tree for each iteration are shown as following
Figure 3. The effective shortest path trees for ‘iteration 1’, ‘iteration 2~4’ and ‘it-
eration 5’ are (a), (b) and (¢), respectively.
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T

Figure 3. Effective shortest path trees

~~
o
~—

5. CONCLUSIONS

In this paper, we proposed a new problem in time dependent networks, which is
to find an optimal departure time given available departure time interval at the
origin. An optimal departure time leads to the minimum delay spent on traveling
the networks. We also presented an algorithm for finding an optimal departure
time when the delay function of each arc is piecewise linear. The proposed algo-
rithm updates a sequence of trees which remains an effective shortest path tree
for some time interval. The algorithm can find a minimum delay path for each
available departure time, and determine the minimum delay path whose depar-
ture time is an optimal departure time. As a subject of further research, it will be
interesting to apply the proposed algorithm to real time-dependent networks and
to examine its performance or usefulness.
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