International Journal of Management Science
Vol 13, No 1, May 2007

Essential Arcs of a Directed Acyclic Graph

Eesuk Chung’

Dept. of Industrial Engineering, Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea

(Received Apr. 2007; Revised May 2007; Accepted May 2007)

ABSTRACT

Among many graphs, directed acyclic graph (DAG) attracts many researchers due to its nice prop-
erty of existence of topological sort. In some classic graph problems, it is known that, if we use the
aforementioned property, then much efficient algorithms can be generated. So, in this paper, new
algorithm for the all-pairs shortest path problem in a DAG is proposed. While the algorithm per-
forming the iteration, it identifies the set of essential arcs which requires in a shortest path. So, the
proposed algorithm has a running time of O(m'n+m), where m, n and m denote the number

of arcs, number of node, and the number of essential arcs in a DAG, respectively.

Keywords: Directed Acyclic Graph, All-pairs Shortest Paths, Essential Arcs
1. Introduction

Let G be a directed graph having n nodes and m arcs with arbitrary arc costs.

The cost of an arc from node u to node v is c,_, and the distance of the shortest

uv /

path from u to v in G is denoted d,,. An arc (u, v)is essential if d,, =c,,. Let

m denote the number of essential arcs in G. It is sufficient to find the shortest-
paths in the subgraph G’ consisting of the set of essential arcs instead of solving the
shortest-paths problem in G.

Karger et al. [4] and McGeoch [7], independently, presented algorithms that solve
the all-pairs shortest paths problem for general graphs and find the set of essential

arcs at once. Their algorithms run in a running time of O(m n+n*logn) if the Fibo-

* Email: eesuk@kaist.ac.kr

121

122 CHUNG

nacci heap is used as a priority queue in the implementation of the Dijkstra's algo-
rithm.

This paper presents an algorithm for identifying the essential arcs of a directed
acyclic graph (DAG) in O(m'n+m) by exploiting the structural properties unique to
a DAG. Some graph problems are easier to solve if the underlying graph is a DAG.
Consider the single-destination shortest paths problem. It allows an O(mn) algorithm
for arbitrary arc costs [1, 6] and O(m+nlogn) one for nonnegative arc costs [2]. In
contrast, it can be solved in O(m) for a DAG with arbitrary arc costs [5]. ADAG has a

topological sort (of its nodes), an ordering of the nodes such that, if there is path from
node u tonode v,then v appears after u in the ordering. The single-destination
shortest paths problem in a DAG is simpler than in a general graph because of the
existence of the topological sort. In this paper, we investigate the benefits of the prop-
erty in identifying the essential arcs in the all-pairs shortest paths problem.

2. Structural Properties of DAGs

Let G=(V,E) be a topologically sorted DAG: that is, if (i,j)e E then i<j.If there
exists a path between any twonodes i and j(i<j) in G,say, i—>k =k, > —
k, — j, then the nodes on the path also have a relationship i<k <k, <---<k <j.

From this property, we get the following result.

Lemma 1. Define Gli..j] for two nodes i and j(i<j) by asubgraph induced from a node
set {i,i+1,---,j=1,j} in G. Consider any two nodes p and q(p <q)in the subgraph
Gli..j] of a topologically sorted DAG G . The shortest path from the node p to the node q
in G isincluded in Gli..j].

Proof. Let us assume that the shortest path P from p to g contains some nodes
not belonging to G[i..j]. Among such nodes, denote the last node on the shortest
path P by r. Hence we have j<r. Since p reaches r, p<r holds. Denote the
node next to r in the shortest path P by k.Since ke G[i.j], r<k<j.Combining

these inequalities gives j<r <k < j, which is a contradiction. w

ESSENTIAL ARCS OF A DIRECTED ACYCLIC GRAPH 123

Define G, =G[1..k] and observe that G, cG,c---cG,., <G ,=G. We also de-
fine E_E,, & ={(jk):(j,k)e E} as the arc set of G,, the essential arc set of G, and

the incoming arcs to the node k of G, respectively. Then we have the following

incremental relationship (1) and (2).
E,=E_ v, E_ N6 =¢ 1)
Theorem 1. If G is a topologically sorted DAG then
E,=E NE,

Proof. The incremental relationship (1) and Lemma 1 implies that the shortest path in

G, is preserved even in the extended graph G,,,, which supports that the essential

arcsin G, are the essential arcs of G which also belongsto G, . a)
1
2 4
2 E; = {(1’2)’(273)>(3> 1)}
J 1 E*=E; ={(1,2),(2,4),(4,3),(3, 1)}
2
1 (3) E;#E*NE;

Figure 1. Theorem 1 is not true in a general graph which is not a DAG

That is, in a DAG, a path being shortest in a subgraph G, is the shortest one in
the original graph G, which is not true in general (see Figure 1). This property plays

a key role in the identification of the essential arcs by an incremental way.
Theorem 2. Let G be a topologically sorted DAG then
E=E,V6, E.nd =9 @

where & =E N6, ={(i,k)e 6, :d, =c,} and d, is defined by the shortest distance from
the node i to the node k.

Proof. E,=E NE,=E N(E_ ud&)=(E NE_)U(E nd,)=E,_, u'é',: o

124 CHUNG

3. Algorithm

We can solve all-pairs shortest paths problem by running single-source shortest paths
algorithm once from each node. Johnson [3] approaches the problem in this way for
the general graph. We apply the same idea for the topologically sorted DAGs. The
single-destination shortest paths from each node to k -th node can be solved by con-

sidering only the arcsin G, (instead of all arcs in G) by Lemma 1.

algorithm ASP-DAG(G)
1dy <0 forall k

2for k-2 to n
3 for i< k-1 downto1

4 dik <« min{cii +djk :(i/].)e Ek}

The lines 3-4 compute the single-destination shortest paths tonode k in G, and
takes O(|E, |)=O(m)time. Hence the running time of ASP-DAG is Z:=ZO(I E 1)
=0(mn).

From Theorem 1 we know that a nonessential arc of G, is not necessary to
compute G,, v2k.By removing nonessential arcs the computational effort is saved.
By Theorem 2 we can do such computation in an incremental way. To identify E,
based on E;_,, consider the graph G, induced by the essential arcs G;, and the
incoming arc set 6,. Since E,NE, ,=E,, and \ E;\E,_ cdJ,, we have to find
only the additional essential arcs &, ={(i,k)e 8, :d, =c,}.

By the incremental relationship (2), ASP-DAG is reformulated as follows.

algorithm ASP-DAG-ESSENTIAL(G)
1dy <0, 6, «¢ forall k

2E = ¢

sfor k<2 to n

4 for i< k-1 downto1l

5 d, «min{c, +d, : (i, j)e E,_,vé,}

6 if c,ed, and d, =c, do &, « &, U{(i,k)}

7 E, «E, ,Ué,

ESSENTIAL ARCS OF A DIRECTED ACYCLIC GRAPH 125

The lines 4-6 compute the single-destination shortest paths to node k in G,

and identify the additional essential arcs 4 .

Theorem 2. The running time of ASP-DAG-ESSENTIAL is O(m’n+m).

Proof. The line 5 takes O(IE,_, |+!8, |) time for each k. The lines 6 takes O(14,)
time for each k. Hence the total complexity is

> OUE,14216,1)<Y’ O(IE 14216, 1) =O(m n+m) u

4. An Example

Consider a DAG having 6 nodes and arc costs given by the Figure 2. The arc costs
associated with non-essential arcs are asterisked. We identify G; using G,. If we
compute the shortest path from all other nodes (less than 5) to the node 5 on the sub-

graph G, =G, Nd,, we get a shortest path tree. See Figure 2.

1 2 3 4 5 &

1 2 6 6 9 9

2 7 1 6 7

3 2 6% 5 @ O—@ ®
4 1 9

5 7

6

Figure 2. Arc cost matrix and shortest path tree of G,

Arcs (1,5),(2,5), and (3, 5) are non-essential arcs because they are not on the
shortest path. That is, these three arcs are not considered in the next step identifying
G, . By excluding the non-essential arcs in the preceding steps, we save the amount of
computations. In the considered example, 10 arcs are essential among 15 original arcs.
The proposed algorithm is likely to be fast in practice even though m" =O(m), be-
cause several probabilistic analyses (refer to [7] and references therein) show that

m =O(nlogn) under some distributional assumptions on the arc costs.

126

CHUNG

References

(1]

(2]

(3]

(4]

(6]

[7]

Bellman, R., “On a routing problem,” Quarterly of Applied Mathematics 16, 1
(1958), 87-90.

Dijkstra, E. W.,, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik 1 (1959), 269-271.

Johnson, D. B., “Efficient algorithms for shortest paths in sparse networks,”
Journal of the ACM 24, 1 (1977), 1-13.

Karger, D. R., D. Koller, and S. J. Phillips, “Finding the hidden path: Time
bounds for all-pairs shortest paths,” SIAM Journal on Computing 22, 6(1993),
1199-1217.

Lawler, E. L., Combinatorial Optimization: Networks and Matrioids, Holt, Rinehart,
and Winston, 1976.

Ford, L. R. Jr. and D. R. Fulkerson, Flows in Networks, Princeton University
Press, 1962.

McGeoch, C. C., “All-pairs shortest paths and the essential subgraph,” Algo-
rithmica 13 (1995), 426-441.

