• Title/Summary/Keyword: K-SHIP

Search Result 5,281, Processing Time 0.036 seconds

Experimental Study of Ship Squat for KCS in Shallow Water (KCS선형의 천수영역에서의 자세 변화에 대한 실험적 연구)

  • Yun, Kunhang;Park, Byoungjae;Yeo, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.34-41
    • /
    • 2014
  • When a ship sails in shallow water, it is well known that an additional sinkage and trim of the ship(squat) is caused by change of hydrodynamic force between the seabed and the bottom of a ship. In this paper, to examine this phenomenon by model tests, the squat of KCS model ship at a low speed is measured by the vision based ship motion measurement system during HPMM tests. Various combinations of a ship speed, a rudder angle and a drift angle were tested at three depth conditions(H/T = 1.2, 1.5 & 2.0). As a result, increase of the ship's speed and ship's drift angle caused an increase in ship squat, but the ship's rudder angle did not. The rate of increase in ship squat was the most at H/T = 1.2 condition. Lastly these experimental results are compared to the results by three empirical formulas and two CFD methods. The tendency of ship squat measured by experiment is similar to those of empirical formulas.

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.

A Study on Application of Ubiquitous Technology for Convenient Environment in Cruise Ship

  • Kim, Hyun;Jang, Won-Kyung;Kim, Kyung-Hwa;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.15 no.5
    • /
    • pp.82-86
    • /
    • 2012
  • These days, the cruise tourist industry is one of the most dynamic and fastest growing components of the leisure industry in the world. Therefore, the cruise ship with ubiquitous technology is expected to enhance the operation efficiency of the ship. It can also provide valuable addition to the ship's service as well as high quality of life to crews and passengers. Since a large number of passengers are dwelling in cruise ship, all passengers are not easy to use ship's facilities, such as restaurants, fitness center, swimming pool and spa at anytime they want. In this paper, passenger service system in ship environment is tested in similar environment and under ship operation condition. We have proposed three applications of ubiquitous technology using Zigbee communication and LabView program.

The Analysis of the Ship's Maneuverability According to the Ship's Trim and Draft (선박 TRIM변화에 따른 조종성능의 분석)

  • PARK, Byung-Soo;KANG, Donghoon;KANG, Il-Kwon;KIM, Hyun-Mu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1865-1871
    • /
    • 2015
  • Ship's trim is the one of the most important factor for safety at the sea. Turning circle test and Z-test were carried out to find the effect of ship's trim and draft changes. The results are as follows. 1. If the ship's draft and trim became large, turning circle would be wide. 2. If the ship's draft and trim became large, ship's drift angle would be small. Small drift angle made wide turning circle. 3. Trim by the head made slow ship's final speed when turning circle test. 4. By Z-test, the deeper draft and trim by the stern made small OSA. Small OSA means strong ship's stability. 5. Totally 2nd OSA is smaller than 1st OSA on Z-test. 6. There were small differences of 2nd OSA in trim by the stern, but there were large OSA in trim by the head. 7. The larger trim by the stern, the smaller OSW. The small OSW means better ship's stability and maneuverability.

Research on Ship to Ship Channel Characteristics Based on Effect of Antenna Location in Inland Waterway at 5.9 GHz

  • Zhang, Jing;Li, Changzhen;Du, Luyao;Chen, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3350-3365
    • /
    • 2020
  • A considerable literature has recently grown up on the theme of ship wireless communications. However, much of the research up to now has been descriptive in the offshore area. There has been little quantitative analysis of wireless communication in inland waterways, which has received considerable attention lately. Until now, only the effects on inland river environment are examined. What is less clear is the nature of channel change caused by the antenna movement. Here we explore the moving ship-to-fixed-ship fading characteristics at 5.9 GHz for an inland waterway in the city center of China. The ship motion trajectory is designed in order to determine the effect of changes in the antenna position. We evaluate the channel fading characteristics of inland waterway, which are highly correlated with the distance between transmitter and receiver. We demonstrate that the line-of-sight component, as well as the components from multipath with obstruction reflections, contributes largely to the mean power gap. Our findings reveal critical ship-to-ship characteristics in inland waterway, which definitely contribute to the field of ship wireless communications.

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

Development of Hull Thickness Management System for Ship Management System (선박 유지보수를 위한 선체 두께 관리 시스템 개발)

  • Park, Kaemyoung;Lee, Jeong-youl;Lee, Kyungho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2015
  • The specific goal of the SMS (Ship Management System) is to increate ship safety and decrease maintenance fee. Equipment of ship is managed by PMS (Planned Management System), subsystem of SMS. But hull has not managed by ship manager. So, the Classes have developed the system for hull maintenance. Recently, the ship maintenance system has been developed for satisfying operator's requirements such as managing maintenance data as integrated platform, intuitive manipulation and design for ease of use. To reflect such requirement, 3D Model based maintenance system was introduced for ship in operation stage. Hull items that have to be inspected, repaired, replaced, are stored in integrated data platform with drawing, reports, and etc. and completely linked to 3D product Model. This system is specially developed for measurement and maintenance of hull thickness.

Ship Collision Analysis Technique considering Surrounding Water (주변 유체를 고려한 선박 충돌해석 기법 연구)

  • Lee, Sang-Gab;Lee, Jeong-Dae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

Measurement and Analysis for 3-D RCS of Maritime Ship based on 6-DOF Model (6 자유도 모델에 기반한 운항중인 함정의 3차원 RCS 측정 및 분석 기법)

  • Gwak, Sang-yell;Jung, Hoi-in
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.429-436
    • /
    • 2018
  • The RCS value of maritime ship is indicator of ship's stealth performance and it should be particularly measured for navy ship to ensure survivability on the battlefield. In the design phase of the navy ship, a RCS prediction should be performed to reduce RCS value and achieve ROC(Required Operational Capability) of the ship through configuration control. In operational phase, the RCS value of the ship should be measured for verifying the designed value and obtaining tactical data to take action against enemy missile. During the measurement of RCS for the ship, ship motion can be affected by roll and pitch in accordance with sea state, which should be analyzed into threat elevation from view point of enemy missile. In this paper, we propose a method to measure and analyze RCS of ship in 3-dimensions using a ship motion measuring instrument and a fixed RCS measurement system. In order to verify the proposed method, we conducted a marine experiment using a test ship in sea environment and compared the measurement data with RCS prediction value which is carried by prediction SW($CornerStone^{TM}$) using CAD model of the ship.

Ship Detection for KOMPSAT and RADARSAT/SAR Images: Field Experiments

  • Yang Chan-Su;Kang Chang-Gu
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.144-147
    • /
    • 2004
  • Two different sensors (here, KOMPSAT and RADARSAT) are considered for ship detection, and are used to delineate the detection performance for their data. The experiments are set for coastal regions of Mokpo Port and Ulsan Port and field experiments on board pilot boat are conducted to collect in situ ship validation information such as ship type and length. This paper introduce mainly the experiment result of ship detection by both RADARSAT SAR imagery and landbased RADAR data, operated by the local Authority of South Korea, so called vessel traffic system (VTS) radar. Fine imagery of Ulsan Port was acquired on June 19, 2004 and in-situ data such as wind speed and direction, taking pictures of ships and natural features were obtained aboard a pilot ship. North winds, with a maximum speed of 3.1 m/s were recorded. Ship's position, size and shape and natural features of breakwaters, oil pipeline and alongside ship were compared using SAR and VTS. It is shown that KOMPSAT/EOC has a good performance in the detection of a moving ship at a speed of 7 kts or more an hour that ship and its wake can be imaged. The detection capability of RADARSAT doesn't matter how fast ship is running and depends on a ship itself, e.g. its material, length and type. Our results indicate that SAR can be applicable to automated ship detection for a VTS and SAR combination service.

  • PDF