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Abstract 

 
A considerable literature has recently grown up on the theme of ship wireless 
communications. However, much of the research up to now has been descriptive in the 
offshore area. There has been little quantitative analysis of wireless communication in inland 
waterways, which has received considerable attention lately. Until now, only the effects on 
inland river environment are examined. What is less clear is the nature of channel change 
caused by the antenna movement. Here we explore the moving ship-to-fixed-ship fading 
characteristics at 5.9 GHz for an inland waterway in the city center of China. The ship 
motion trajectory is designed in order to determine the effect of changes in the antenna 
position. We evaluate the channel fading characteristics of inland waterway, which are 
highly correlated with the distance between transmitter and receiver. We demonstrate that 
the line-of-sight component, as well as the components from multipath with obstruction 
reflections, contributes largely to the mean power gap. Our findings reveal critical ship-to-
ship characteristics in inland waterway, which definitely contribute to the field of ship 
wireless communications. 
 
 
Keywords: Channel Characteristics, Small Scale Fading, Path Loss, Antenna Location 
Change, Ship to Ship 
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1. Introduction  

With the rapid development of shipping, increasing attention has been focused on wireless 
channel characteristics for ship communication systems [1]. Wireless communication has a 
pivotal role in water transport traffic information. There is a growing body of literature 
recognizes that the importance of ship wireless communication. There are a number of 
important differences between the transmission of radio waves on the water surface and radio 
waves on the land. In addition to the distance and the obstacles, the absorption and reflection 
of radio waves by water should be considered. Consequently, much research has been 
performed on the effects of water surface environments (e.g. coastal and inland river 
environments) [2, 3]. Furthermore, much of the previous work on ship radio channel 
measurements is implemented in the sea environment [4-6]. The issue of Inland waterway 
(IW) wireless communication has received considerable critical attention. 

IW wireless communication (IWWC) technology can guarantee ship-to-ship safety. 
Previous vehicle-to-vehicle (V2V) measurement campaigns focus exclusively on wireless 
propagation within specific environments [7]. However, the communication technology 
satisfying the needs of the ship community in for the inland waterway environment is still 
lacking. Recently, researchers have shown an increased interest in IWWC. IWWC is 
expected to offer ships data rich wireless communications, including high quality voice and 
video broadcasting, which can potentially guarantee real-time communication between ship 
users and the waterway administration during journeys. In addition, IW communication can 
enhance inland navigation traffic safety.  

However, the determination of IWWC is technically challenging, the characteristics of 
ship channel propagation are distinct from other cellular channel profiles, particularly within 
the time and frequency domains. For example, a multipath fading channel model based on 
measured data in the Greek Aegean Sea [8]. It describes unique wireless propagation in sea 
environment which is distinctively different from that of IW environment channel systems. 
Experiments in [9] demonstrated that transmission distance has a significant impact on the 
power delay profile (PDP). This implies that under certain conditions, extended distances 
will reduce frequency fading within the sea environment. Furthermore, [4] proposed several 
marine communication propagation characteristics, yet most were based on an ocean 
environment, thus limiting the feasibility of such characteristics for inland waterway 
research. Such expositions are unsatisfactory because they lacked the experimental data 
analytics to research the IWWC much further. In order to improve our understanding on the 
mechanisms underlying the stationarity of IW channels, the current study investigates 
channel characteristics of a moving ship based on experimental measurements.  

This paper highlights the importance of the reliable and realistic channel measurement is 
the enabling foundation to review any wideband digital mobile radio system for IWWC. 
There are two primary aims of this study: 1. To investigate IWWC channel characteristic. 2. 
To ascertain the influence of Antenna Location 

This dissertation follows a practicalities in inland waterway, with in-depth analysis of the 
path loss exponent and small scale fading are developed under condition of similarity 
scenarios (velocity, direction, et. al) at 5.9 GHz. Meanwhile, Doppler features of line of 
sight(LOS) components are statistically studied. And also investigated the time delay 
characteristics respecting to the varying position when ship moving. In particular, channel 
characteristics such as channel gain, delay and Doppler spreads were derived from 
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measurement data obtained from different positions of the ship motion trajectory. Small-
scale fading analysis reveals that the K-factor and power delay profile (PDP) characteristics 
vary significantly with the distance between the transmitter and receiver.  

This paper first gives a brief overview of the inland waterway channel. The article is 
composed of four themed sectors. In Section II, we provide the detail of the measurement 
equipment and the specifications for the scenario. After that, Section III dedicates the path 
loss analysis used for the channel measurements, two measurement campaigns and 
comparison of results are given. Section IV mainly contains statistical feature analysis and 
crucial parameter estimations in small scale characteristics. In section V, we explain the 
results of RMS delay and Doppler spreads. At last, acknowledgements and conclusion are 
noted in Section V. 

2. Environment, Equipment, and Measurements 
Measurements were performed in the Wuhan section of Yangtse River, between YingWu 
Zhou Bridge (red dotted line in Fig. 1) and Wuhan Yangtze River Bridge (yellow dotted line 
in Fig. 1). The measurement environment is indicated on a satellite map in Fig. 1. The 
receiver (RX) station (yellow pin in Fig. 1) is located at the coordinates of 30°30′51″N, 
114°17′15″E. The red arrow in Fig. 1 indicates the ship motion trajectory, representing a ship 
motion along the waterway side from point A point to point B. Furthermore, h denotes the 
perpendicular distance from the RX to the motion trajectory, with the blue arrow showing the 
distance as approximately 525 meter according to Global Positioning System (GPS) 
measurements. Many anchored ships can be observed in the measurement area along the 
riverside behind the RX. In summary, the several significant channel characteristics will be 
affected by the wireless propagation fading during the ship moving in inland waterway. 

 
Fig. 1. Satellite Map of Measurement Area by Google Earth 

 
Measurements were obtained using a time-division multiplexing (TDM) channel sounder 

(Fig. 2 (c) and (d)) provided by Super Radio AS of Norway to test the IW channel 
characteristics. As shown in Fig. 2, the channel sounder mainly consisted of the transmitter 
(TX) and RX (Fig. 2 (a) and (b)). The parameters of the measurement setup are listed in 
Table 1. The TX antenna mounted on the ship (Fig. 2 (b)) included an omnidirectional 
antenna pointed in the direction of the ship motion with a 2 dB gain. The RX was fixed on the 

h=525m 

A 
B 
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deck of a pontoon mooring on the riverside (Fig. 2 (a)). A chirp signal with a 10 ns delay 
resolution and a 100 MHz bandwidth with a signal power of 16 dB was transmitted by the 
antenna. Moreover, the channel generation function h(f,t) was obtained using a Fourier 
transform of the channel impulse response, and the maximum supporting Doppler band was 
±966.5 Hz. Based on the time structure of the TDM channel sounder, the RX could receive 
833 chirps per second (Tt = 1200 μs), and each chirp signal contained 2560 samples. The 
remaining components of the test system included laptops, power supplies, ships, a boat 
pontoon, and a GPS (Fig. 2 (c) and (d)). 

 

    
a                                                                   b 

    
c                                                              d 

Fig. 2. a,b,c,d are photos of the propagation environments of TX and RX and channel sounder, 
respectively 

 
(a) RX position on the Pontoon 
(b) TX is mounted on the ship deck 
(c) TDM channel sounder 
(d) The remaining components of the test system 
 

Table 1. Measurement parameters 
Parameters Values 

Center frequency 5.9 GHz 
Delay resolution 8.125ns 

TX Beam-width elevation ±5.5° 
TX antenna type Dipole(vertical) 

RX Beam-width elevation ±4° 
RX Beam-width azimuth ±45° 

TX height 5.0625m 
RX height 4.61m 

2.1 Scenario Description  
In order to assess the impacts of changes in position on wireless propagation, we defined the 
ship movement trajectory (red arrow in Fig. 1) as standard (Fig. 3). This was done in order to 
distinguish the ship moving samples and to evaluate channel fading in IW. Furthermore, for a 
more detailed investigation, we divided the ship movement trajectory into two regions, 

RX 

TDM channel sounder 

GPS 

TX 
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namely TX-C1 and TX-C2. The route from point A to point B is divided equally between TX-
C1 and TX-C2. Midpoint C of this route is the nearest point to the RX, and the distance from 
point C to RX is h=525 m (Fig. 3). 
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Fig. 3. Overview of the measurement by plane graph 

Ichnography was used to measure and analyze the relationship between the moving ship 
and its direction (Fig. 3). More specifically, the RX was located between the two bridges and 
kept stationary during the measurements; v=0 m/s. From the satellite image in Fig. 1 with the 
actual measurements reveals a waterway width of 1100 m, and a distance between the RX and 
the trajectory of point A or B of 600 m. In addition, the TX was equipped with an 
omnidirectional antenna mounted on the ship with a speed of Vt≈5 m/s throughout the 
trajectory. The water velocity in the Wuhan section in summer was assumed to be 2.5 m/s 
[10]. 

2.2 Data collection and processing 
To identify the channel statistical characteristics, the channel sounder signals were converted 
from the frequency domain to a channel impulse response (CIR) using a Fourier transform. 
The existing literature on CIRs is extensive and focuses particularly on the methods for 
collecting CIRs [11]. For each measurement, a laptop can store the CIR values sampled by the 
RX, it then collects the phase of each vector sample and the PDP of each associated received 
signal. Using the impulse response function of Bello [11], The relationship between the 
channel input and output can be expressed by an impulse response function. 

where ( )H τ  is known as the time-varying impulse response function. Where, Ai is the 
attenuation amplitude of path i; iϕ  is the phase deviation of path i; iτ is the time delay of path 
i; N is the total number of paths; τδ  is Dirac Delta function. The characterize of the channel 
usually purported to represent the autocorrelation function of the impulse response. 

( ) ( )
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N
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3. Path Loss 
The derivation of the path loss is determined using the measured transfer functions. From 
previous environment descriptions, we first compiled each measurement location channel’s 
statistical descriptions. To determine the path loss, the time-varying PDP was derived for each 
time sample. For each CIR matrix, the PDP was described for each row as follows: 

( ) ( ) ( )2

0
, ,

t i

t
P n M n m mm δ m

=

=

= −∑                                                               (2) 

where n is the index of the row, µ  is the index of the discrete delay, and M(n, m) is the 
CIR matrix that represents the element in the nth row and mth column. Each PDP was 
normalized by the strongest tap, and average the PDP was computed by averaging all the 
normalized PDPs in the CIR matrix. The averaged PDP (APDP) was calculated as follows [11] 
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In this expression, ( ),jh t n t t+ ∆  is defined by Equation (1), and: 
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where τ  is the propagation delay, NAV is the time sample value for small scale fading, 
and Δt is the time step. NAV was calculated as s/vΔt, where v is the velocity of the TX, and s 
is the wavelength that corresponds to the movement. 

As the propagation distance increases, the overall path loss also increases. The channel 
fluctuations are affected by many factors, such as ground reflection, overwater refraction, 
building shadows, and additional ships between the ship being studied and the boat pontoon. 
These loss factors may affect the communication channel [12]. The path loss formula can be 
expressed as follows. 

( ) t t r r cPL d P G G P P= + + − −                                                                      (5) 
where PL(d) is the path loss at an RX-TX separation distance d, Pt is the transmission 

power of wireless signals without an antenna gain of 16 dB, Gt is the transmitted antenna gain, 
Gr is the received antenna gain, Pr is the received signal power at distance d, and Pc is the 
cable transmission loss, given as 6 dB. Measurements can be used to obtain the path loss 
values and the average path loss for each test point. 

In terms of impact, it's been shown that barriers and distance reinforce each other's path 
loss [13]. We found that the change of received power of two groups occurs were bring by the 
distance change between TX and RX. Table 2 give the statistical characteristics of path loss 
in whole measurement. Fig. 4 describe the path loss of TX ship was moving under 
measurement. By understanding Fig. 4, we can increase our understanding and learn more 
about the path loss differences between TX-C1 and TX-C2. It could be seen that the path loss 
from A point to C point represented by blue line is depicted as TX-C1. Moreover, the red line, 
it represents path loss of TX-C2. The A, B, C point in Fig 3 and Fig 4 are identical. By 
analyzing Fig 4 and Table 2, all the propagation path loss includes TX-C1 and TX-C2 from 
525 meter to 600 meter. The characteristic curve of of the TX-C1 and TX-C2 path loss 
showed significant differences. The path loss of TX-C2 was about 7.33 dB higher than of TX-
C1 on average, as shown in Table 2. 

Fig. 4 is quite revealing in several ways. First, for TX-C2, a significant positive correlation 
can be observed between the path loss and distance. The path loss of TX-C1 is weaker against 
TX-C2 changes for the same change in distance. Furthermore, it is evident that the path loss 
of TX-C1 and TX-C2 exhibit differences, even for the same parameter conditions and under 
the same changes in distance. This may be attributed to the antenna mounting locations on the 
ship. More specifically, the location of the antennas may cause channel diversity and shadow 
fading, depending on the position of the ship. Thus, any path loss conclusions should be 
considered in terms of the effects of any obstacles between the TX and the RX. 

 
Fig. 4. Propagation path loss analysis. 

A 

C B 

TX-C1 

TX-C2 
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One of the more significant findings to emerge from this study is that there are different of 

TX-C1 and TX-C2 under the same parameter conditions and the same distance change in IW 
channel system. Beyond this, any path loss conclusions must be regarded as the effects of 
obstacles between the TX and the RX. 

 
Table 2. The Statistical Characteristics of Path Loss in whole measurement 

States Min Max Ave Std 
TX-C1 82.62 89.03 84.74 1.40 
TX-C2 87.58 95.79 92.07 1.91 

4. Small Scale Fading Characteristics  
Small-scale fading is a rapid change in the amplitude, phase, or multipath delay when the 
radio signal is transmitted over a short time or distance [14]. Many researchers have utilized 
small-scale fading to measure the channel characteristics. To obtain the small-scale 
characteristics, the path losses were filtered from the received signals. In this article, the 
small-scale fading used a sliding window with a length of 20 wavelengths to study and 
analyze the raw data. 

4.1 Amplitude Fading Distribution 
The Akaike information criterion (AIC) standard was founded and developed by Japanese 
statistician Akio Hiroshi [15]. It is a method used to measure the goodness of a statistical 
model fit. The AIC information can estimate the complexity of a model and use it to compare 
common channel distributions, such as the Rician, Rayleigh, and Nakagami distributions [16-
18]. Moreover, the AIC information can be used to obtain fitting curves of the measurement 
data to rule out the possibility of overfitting. Therefore, based on the smallest AIC value 
method, the optimum preferred model can be selected. Normally, the AIC is calculated as 
follows: 

2
2

1=

T

k t
T t

e
AIC e

T

 
  = 
∑

                                                                                 (6) 

where 2 /k Te  is the penalty factor, and k is the number of coefficients, T is number of the 
sample observed. It was further assumed that the error of the model obeyed an independent 
normal distribution, and thus the AIC can be expressed as follows: 

2ln lnk RSSAIC
T T

 = +  
 

                                                                       (7) 

where RSS is the root sum squared. If RSS is applied, it is usually represented by a normal 
or approximately normal distribution. The RSS is equal to the square root of the sum of the 
squares of the measurement statistics. 

The results confirmed the association between the AIC values and the effects of various 
distributions on the channel propagation. Fig. 5 below illustrates some of the main 
characteristics of the amplitude distribution values for these test periods. The red “×” markers 
denote the Rician distribution, the blue “” markers denote the Nakagami-m distribution, the 
green “★” markers denote the Rayleigh distribution, and the black “▽” markers denote the 
Weber distribution. The results of the AIC distribution correlational analysis are shown in Fig. 
5 (a), (b) and Table 3.  
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Fig. 5 shows that for TX-C1 and TX-C2, the AIC analysis assigns more significance to the 
Rician distribution compared with the other distributions. A closer inspection of Fig. 5 reveals 
that the Rician distribution is located centrally within all distributions. The Rician distribution 
was the most prominent due to the absence of obstructions between the TX on the ship and 
the RX in the TX-C1 and TX-C2. Thus, there a LOS was always present between the TX and 
the RX. The most surprising aspect of the AIC distribution analysis is the inconsistency 
between TX-C1 and TX-C2.  

According to the AIC analysis, for these two scenes, the Rician distribution accounts for 
the largest proportion in two state, as there are few ships in the inland waterway. The Rician 
distribution is the most obvious due to the absence of obstructions between the TX ship and 
RX. The Rayleigh distribution is mainly present in the absence of any direct path when radio 
waves cannot be directly transmitted to the RX. The Weber distribution is more complicated 
than the Rayleigh distribution. This is due to special path conditions in the transmission of 
radio waves (bridge building obscured, reflection by buildings on river side, etc) when the 
ship moving in the waterway. Thus, the Weber distribution also accounts for a certain 
proportion. 

 

     
a: AIC distribution of  TX-C1          b: AIC distribution of  TX-C2 

Fig. 5. AIC distribution 
 

Table 3. The Proportion of Distributions in Different States 
Distributions 
              (%) 

Status 

 
Rician 

 
Rayleigh 

 

 
Weber 

 
Nakagami

-m 
TX-C1 61.23 3.06 25.11 10.59 
TX-C2 57.93 23.68 15.77 2.61 

4.2 The Rician distribution K-Factors Analysis 
The Rician distribution is a continuous probability distribution that was used to quantify the 
time-varying characteristics of the received signal envelope in the wireless channel. The 
probability density function of the Rician distribution is expressed as follows: 

( )
2 2

02 22
2

r A rAIrP r e σ σ

σ

 +  •    −   =                                                     (8) 

where r is the envelope of the received signal, σ2 is the variance of the multipath 
components, A is the power of the main signal, and I0 is the zeroth-order modified Bessel 
function of the first kind.  

The K-factor is one of the most common parameters for evaluating a Rician distribution. It 
can be defined as the ratio of the main signal power and the variance of the multipath 
components as follows: 
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2

22
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To better understand the K-factor, we classified the expression into the dB type as follows: 
2

210 log
2
AK
σ

=                                                         (10) 

When A = 0, K =-∞ dB, which indicates that the multipath fading is the largest, and the 
Rician distribution will transform to a Rayleigh distribution. When K = ∞ dB, signal fading is 
not present. Moreover, if the multipath component value is very high, the K-factor value will 
be reduced. When LOS propagation is present in the multipath propagation, the multipath 
signal obeys a Rician distribution. For the Rician distribution, the K-factor defines the ratio of 
the power of the main signal to the variance of the multipath component. In the LOS channel, 
the K-factor is generally positive, whereas if there is a reflection path or NLOS channel, the 
K-factor becomes negative. 

To distinguish the propagation processes between TX-C1 and TX-C2, the K factors of each 
state were calculated (Fig. 6 and Table 4). Note that the K factors were estimated using the 
same displacement distance and motion direction. Significant differences were identified 
between the performances of the two states.  

   
a: K-factor in TX-C1                           b: K-factor in TX-C2 
Fig. 6. Test scenario Rician distribution K-factor 

 
Table 4. The Statistical Characteristics of K factor in two measurement 

States Min Max Ave Std 
TX-C1 1.59 dB 7.85 dB 5.78 dB 1.32 
TX-C2 -2.51 dB 4.40 dB 0.55 dB 1.62 

 

The K-factors reported in this section are estimated using a moment-based estimator. There 
was no observed obstacle interference to the LOS for TX-C1, yet the TX-C2 K factor was 
extremely low. This suggests the presence of obstacle interference to the LOS for TX-C2. 

The results of the TX-C1 and TX-C2 performance comparisons are somewhat 
counterintuitive. This inconsistency can be attributed to several factors, including the ship 
motion direction and the mounting position of the TX on the ship. 

4.3 Power Delay Profile 
PDP is widely used to calculate the average dispersion of a transmitted signal in the time-
delay domain. The term PDP refers to the power at the channel output as a function of the 
time delay. Previous research has established that the average and normalized PDP over a 
region can be regarded as stationary in the wide sense stationary (WSS). The wide sense 
stationary-uncorrelated scattering (WSSUS) model [19] has been applied to calculate the 
average delay and the root-mean-squared (RMS) delay spread extensively as a description of 
the frequency selection. To fully meet the requirements of the WSSUS, the time varying PDP 
[20] was calculated for the measurement data. 
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Using Equation (3), we obtained 1547 averaged PDPs for the 30 seconds measurement. 
These PDPs provided a measure of the spread of the received energy over time and were used 
to verify existence of multipath propagation. The different spread energies can also provide 
some information regarding the various motions in which the PDP was recorded. 

Based on the APDP, we also derive the time-variant channel gain, which includes the 
impact of the antennas used, as follows: 

( )( ) ,G t P tt
t

t= ∑                                                         (11) 

For the measured channel gain, we set a noise threshold, setting all components within 30 
dB of the noise floor to zero to reduce the impact of noise. 

The time-varying APDP and the corresponding channel gain are shown in Fig. 7 and Fig. 8, 
respectively. These Fig.s depict the results of the average PDPs from successive WSS regions. 
Since the PDPs were evaluated via measurements, not from theoretical values, mathematical 
expressions cannot be used to describe their shape. Comparing the two states (Fig. 7) reveals 
the following conclusions. The LOS path is persistently dominant and strong, and a relatively 
weak path (reflection path 1) is observed parallel to the LOS component, exhibiting a long 
lifespan. 

As shown in Fig. 7. The path power of TX-C1, the main strong path is reduced from 
−50.56 dB to −75.92 dB. The excess delays between the LOS and reflection (Path 1) paths in 
Fig. 7 decrease by 1.02 μs from the beginning (excess delay: 1.72 μs) to the end (excess delay: 
0.7 μs). In the TX-C2 state, a reflection path (Path 2) was evident in the 0–8 second range. the 
path power of the main strong path was stable in the range of -85.41 dB to -82.62 dB. In this 
time period, the excess delays between the LOS path and reflection path 2 in Fig. 7 decrease 
by 0.07 μs from the 1st second (excess delay: 1.63 μs) to the 8th second (excess delay: 1.56 
μs). It is appeared that different excess delay in same variety of space between TX and RX. 
The excess delay gap is on such a gigantic scale illustration that the distance change is not the 
main thing in influencing excess delays.  

 
Fig. 7. PDP in TX-C1 and TX-C2 state 

 

 
Fig. 8. Channel Gain in TX-C1 and TX-C2 state 

 

TX-C1 TX-C2 

TX-C1 

TX-C2 

LOS Path 
Reflection Path  1 

Reflection Path  2 

 1720 ns  700 ns 
 1630 ns  1560 ns 

LOS 

NLOS 
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The reflecting objects include the moving ship, vigorously rocking, waterway wave surface 
specular reflection, and riverside buildings; and diffuse components coming from reflections 
on other objects along the riverside, all of which can result in a signal delay. These 
surroundings are consistent with the measured results. It can be concluded that the LOS will 
dominate the delay domain in the waterway scenario, and that problems associated with weak 
reflection will be present. These reflection paths may be caused by reflections by scatterers 
that appear constant with respect to both the TX ship. 

Differences due to the antenna gain can be best appreciated in the plots of the channel gain 
in Fig. 8. In particular, we show that different TX-RX antenna pairs result in different channel 
gains due to distinct position properties (i.e. same distance, different positions). The overall 
difference in the channel gain for the TX-RX links is higher in the TX-C1 state than in the 
TX-C2 state in Table 5. This is because in the TX-C1 state, the TX ship is moving towards 
the RX, unlike in the TX-C2 state, where the antenna gain of the RX is higher in the parallel 
direction than in the transverse direction. The channel gain for the TX-C2 state is 
approximately 7 dB lower than that of the TX-C1 state because the main gain of TX-C2 
occurs with the TX pointing in the direction opposite to the RX direction. Therefore, the 
antenna gain does not have a major impact on the channel gain of the ship motion. 

 
Table 5. The Statistical Characteristics of Channel Gain 

States Min Max Ave Std 
TX-C1 -89.03 -82.62 -84.73 1.39 
TX-C2 -95.79 -87.58 -92.10 2.10 

5. RMS Delay and Doppler Spreads Analysis 
The RMS delay and Doppler spreads are also important parameters in wireless propagation. 
The RMS delay spread and RMS Doppler spread of the channel was indicated to describe the 
power spread by the channel in time and in frequency. 

5.1 RMS Delay Spread 
The delay spread is the difference between the last resolvable delay signal and the arrival time 
of the earliest delay signal [21]. The signal arriving at the receiver is a composite of each 
signal that has a different path and a time difference. Thus, the composite signal will exhibit a 
delay spread relative to the original signal in the time domain. The delay spread generally 
describes the temporal dispersion characteristics of a multipath channel. The root mean square 
delay spread is the square root of the second order matrix of the power delay distribution of 
the multipath channel. 

The RMS delay spread describes the statistical characteristics of the multipath channel 
delay (12)： 

( ) ( )22

0
= - a P dτ τ τ τ

∞
∆ ∫  .                                              (12) 

where ατ  is the average delay, and ∆  is the mean squared delay spread, which 
characterizes the extent of the delay spread. 

Fig. 9 depicts the PDF and CDF of the RMS delay spread for the TX-C1 and TX-C2 states. 
The mean values of the delay spread with the typical values for each case are reported in 
Table 6. 

The results from Table 6 were somewhat expected. The lowest delay spreads were found 
in the TX-C1 state, mostly because of its low density of scatterers around the route of TX 
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antenna. Although there were similarities between TX-C1 and TX-C2, TX-C2 exhibited the 
largest delay spreads, possibly due to the ship motion direction and other far scatterers. Our 
survey revealed that when measurement ship moved past C point, the TX antenna was with its 
back to the RX, by looking to certain existing Fig. 3 and TX antenna orientation. 

 

  
                                         a 

  
                                         b 
Fig. 9. Comparison of the CDF and PDF of the RMS delay spread and mean delay spread in two 

different motion states 
 

CDF: cumulative density function 
PDF: probability density function 
(a) depict the CDF and PDF of TX-C1 state 
(b) depict the CDF and PDF of TX-C2 state 
 

Table 6. RMS Delay spread parameters for each investigated states 
 Min [ns] Max [ns] Mean [ns] 

TX-C1 0.71 7.89 1.52 
TX-B2 4.72 2203 134.74 

 
Previous studies of the RMS delay spread values have not dealt with the change of position 

about ship motion trajectory. The generalizability of much of the previously published 
research on this issue is unknown. The RMS delay spread results presented herein for low and 
high densities of scatterers will serve as a reference for ship moving in inland waterway 
environments. The PDF of the RMS delay for the TX-C1 state is 0 ns with the possibility of 
70% due to the existence of a dominant component LOS. Meanwhile, the RMS delay in TX-
C2 experienced the most severe multipath effects. The probability of a 0 ns RMS delay spread 
of the TX-C2 case was 90% because the dominant component was LOS propagation, as 
shown in Fig. 9 (b). Thus, the LOS component played a leading role in the propagation 
processes for TX-C1 and TX-C2. 

Contrary to expectations, even the same measurement distance changes can have 
significant difference between them. This indicates that when the ship moving in the same 
trajectory, reflection and the change of antenna position have a large influence on signal 
propagation, making the waterway situation notably different from other measurements in 
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typical coastal environments. Also, the RMS delay spread of ship in inland waterway is larger 
than the RMS delay spread of V2V in the land environment. 

5.2 RMS Doppler Spread 
The RMS Doppler spread is the normalized second-order central moment of the time-variant 
Doppler spread density. Ship movement continuously changes according to different 
frequency shifts. We can obtain the Doppler spread density by applying a Fourier transform 
on the impulse response as follows: 

( ) ( ) 2
0

1
, i i

N
j i t

f o f i f
i

D f R A e e d tjdtt    πλ∞ − − − D
D =−∞

=

= D∑∫                                             (13) 

Where Rf is the frequency range about observation, Δf is frequency difference. 
According to the autocorrelation theorem, the time-variant transfer function of the Doppler 

spread is equivalent to the conjugate of the function’s Fourier transform. 
( ) ( ){ } 2

,f o fD f R F H τ=                                                       (14) 
where F is the Fourier transform. 
The measured RMS Doppler spreads are shown in Fig. 10. Note that we assume that the 

TX ship maintained a continuous speed to verify the impacts of the ship motion on the IW 
channel. Although measurements were performed under the same conditions (velocity and 
direction of motion) during the whole test, TX movements will still result in large differences 
in the RMS Doppler spread when the multipath components arrive at the RX. We can clearly 
observe the changes in the Doppler spread for the two states increase consistently (Fig. 10). 
However, this growth trend is not equal to the Doppler effect. 

The left part of Fig. 10 demonstrates the Doppler spectrum in TX-C1. More specifically, it 
reveals that at the starting point (TX is directly moving to RX), the Doppler frequency 
become larger as distance between TX and RX decreases. Point C declared an end to the 
period of TX-C1 as well as the period of TX-C2 begin. After point C (TX is moving away 
from RX), the Doppler frequency exhibits a consistent growth. 

 
Fig. 10. RMS Doppler spreads 

 
Furthermore, the maximum values of the TX-C1and TX-C2 Doppler spectrum generally 

occur in the final period. For TX-C1, we observe a relatively constant RMS Doppler spread 
within 145-200 Hz until the 13th second. Similarly, for TX-C2, the RMS Doppler spread 
value exhibits a stable trend before the 10th second. Moreover, we can clearly observe a 
strong Doppler component from 10 to 11 seconds, which contributes to the increase in the 
RMS Doppler spread. After the 11th second, the strong RMS Doppler spread disappears, with 
more Doppler components exhibiting stability. 

The RMS Doppler spreads are observed to be proportional to the distance variations 
between the TX and RX. This is due to the channel fading induced by position changes, 
which is somewhat expected [21]. However, the observed difference between TX-C1and TX-

TX-C1 

TX-C2 

C 

LOS 

NLOS 
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C2 in this study was significant. In particular, when the TX antenna moved to face the RX, 
the value of the Doppler spectrum grew at an inverse proportion to the distance from the TX 
to the RX. Conversely, when the TX antenna moved away from the RX, the TX antenna did 
not directly face the RX, with Doppler spectrum values proportional to the increased distance 
between TX and RX. Moreover, the sharp fluctuations of the Doppler components can be 
attributed to the switch between LOS and NLOS.  

6. Conclusion 
The main aim of the current study was to determine whether motion trajectory changes 
impact the statistics of multiple locations during ship movements in inland waterways. Based 
on the changes in distance between the TX and RX, fundamental propagation mechanisms 
were investigated via a real-time channel sounder at 5.9 GHz. The following conclusions can 
be drawn from the present study. The most obvious finding is that path loss is highly 
influenced by the moving direction of the ship. In particular, the power through the antenna 
can potentially increase by 8dB. Moreover, these are more prominent for Rician distribution 
in small-scale fading, because of the presence of no obstacles between the TX and RX. In the 
K factor profiles, the mean values of the measurements of the two states differed by up to 5 
dB due to obstacle interference. Furthermore, results reveal that different positions in the 
ship motion trajectory will significantly affect the excess delays of the wireless propagation. 
Value deviations of excess delays were observed to be 0.95 μs between the two states for 
similar ship movements, depending on changes in the antenna position within the TX and 
RX. RMS delay and Doppler spread analysis revealed that the wireless propagation under 
investigation was affected by antenna shifts due to the direction of the moving ship. 
Therefore, the effect of the position change on the Doppler frequency in IW channel is non-
negligible. Notwithstanding the relatively limited sample, this research offers valuable 
insights into ship antenna moving at different positions on the track. This research has 
thrown up many questions in need of further investigation about radiation angle of antenna. 
The findings of this study have a number of important implications for ship to ship wireless 
propagation in inland waterway practice. 
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