• Title/Summary/Keyword: K-Means Clustering

Search Result 1,117, Processing Time 0.025 seconds

Decision Support System for Mongolian Portfolio Selection

  • Bukhsuren, Enkhtuul;Sambuu, Uyanga;Namsrai, Oyun-Erdene;Namsrai, Batnasan;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.637-649
    • /
    • 2022
  • Investors aim to increase their profitability by investing in the stock market. An adroit strategy for minimizing related risk lies through diversifying portfolio operationalization. In this paper, we propose a six-step stocks portfolio selection model. This model is based on data mining clustering techniques that reflect the ensuing impact of the political, economic, legal, and corporate governance in Mongolia. As a dataset, we have selected stock exchange trading price, financial statements, and operational reports of top-20 highly capitalized stocks that were traded at the Mongolian Stock Exchange from 2013 to 2017. In order to cluster the stock returns and risks, we have used k-means clustering techniques. We have combined both k-means clustering with Markowitz's portfolio theory to create an optimal and efficient portfolio. We constructed an efficient frontier, creating 15 portfolios, and computed the weight of stocks in each portfolio. From these portfolio options, the investor is given a choice to choose any one option.

The Quantization of Lumbar Ultrasonographic Images using Fuzzy C-Means Clustering (퍼지 C-Means 클러스터링을 이용한 요부 초음파 영상의 양자화)

  • Hong, Dong-Jin;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.301-302
    • /
    • 2013
  • 본 논문에서는 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각 클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에서 나타낸다. 본 논문에서 제안하는 기법을 적용한 요부 초음파 영상과 일반적으로 자주 이용되는 히스토그램 기반 양자화 기법을 적용한 요부 초음파 영상을 비교하였을 때, 본 논문에서 제안하는 퍼지 C-Means 클러스터링을 이용한 양자화를 적용한 영상이 근육 내의 지방을 분석하는데 효과적인 것을 확인할 수 있었다.

  • PDF

A Study on the Gen Expression Data Analysis Using Fuzzy Clustering

  • Choi, Hang-Suk;Cha, Kyung-Joon;Park, Hong-Goo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.25-29
    • /
    • 2005
  • Microarry 기술의 발전은 유전자의 기능과 상호 관련성 그리고 특성을 파악 가능하게 하였으며, 이를 위한 다양한 분석 기법들이 소개되고 있다. 본 연구에서 소개하는 fuzzy clustering 기법은 genome 영역의 expression 분석에 가장 널리 사용되는 기법중 비지도학습(unsupervized) 분석 기법이다. Fuzzy clustering 기법을 효모(yeast) expression 데이터를 이용하여 분류하여 hard k-means와 비교 하였다.

  • PDF

Comparison of Document Clustering Performance Using Various Dimension Reduction Methods (다양한 차원 축소 기법을 적용한 문서 군집화 성능 비교)

  • Cho, Heeryon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.437-438
    • /
    • 2018
  • 문서 군집화 성능을 높이기 위한 한 방법으로 차원 축소를 적용한 문서 벡터로 군집화를 실시하는 방법이 있다. 본 발표에서는 특이값 분해(SVD), 커널 주성분 분석(Kernel PCA), Doc2Vec 등의 차원 축소 기법을, K-평균 군집화(K-means clustering), 계층적 병합 군집화(hierarchical agglomerative clustering), 스펙트럼 군집화(spectral clustering)에 적용하고, 그 성능을 비교해 본다.

Major DNA Marker Mining of Hanwoo Chromosome 6 by Bootstrap Method

  • Lee, Jea-Young;Lee, Yong-Won
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.657-668
    • /
    • 2004
  • Permutation test has been applied for the QTL(quantitative trait loci) analysis and we selected a major locus. K -means clustering analysis, for the major DNA Marker mining of ILSTS035 microsatellite loci in Hanwoo chromosome 6, has been described. Finally, bootstrap testing method has been adapted to calculate confidence intervals and for finding major DNA Markers.

The Document Clustering using LSI of IR (LSI를 이용한 문서 클러스터링)

  • 고지현;최영란;유준현;박순철
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.330-335
    • /
    • 2002
  • The most critical issue in information retrieval system is to have adequate results corresponding to user requests. When all documents related with user inquiry retrieve, it is not easy not only to find correct document what user wants but is limited. Therefore, clustering method that grouped by corresponding documents has widely used so far. In this paper, we cluster on the basis of the meaning rather than the index term in the existing document and a LSI method is applied by this reason. Furthermore, we distinguish and analyze differences from the clustering using widely-used K-Means algorithm for the document clustering.

  • PDF

Image Clustering using Color, Texture and Shape Features

  • Sleit, Azzam;Abu Dalhoum, Abdel Llatif;Qatawneh, Mohammad;Al-Sharief, Maryam;Al-Jabaly, Rawa'a;Karajeh, Ola
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.211-227
    • /
    • 2011
  • Content Based Image Retrieval (CBIR) is an approach for retrieving similar images from an image database based on automatically-derived image features. The quality of a retrieval system depends on the features used to describe image content. In this paper, we propose an image clustering system that takes a database of images as input and clusters them using k-means clustering algorithm taking into consideration color, texture and shape features. Experimental results show that the combination of the three features brings about higher values of accuracy and precision.

A Study on Phase of Arrival Pattern using K-means Clustering Analysis (K-Means 클러스터링을 활용한 선박입항패턴 단계화 연구)

  • Lee, Jeong-Seok;Lee, Hyeong-Tak;Cho, Ik-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.54-55
    • /
    • 2020
  • In 4th Industrial Revolution, technologies such as artificial intelligence, Internet of Things, and Big data are closely related to the maritime industry, which led to the birth of autonomous vessels. Due to the technical characteristics of the current vessel, the speed cannot be suddenly lowered, so complex communication such as the help of a tug boat, boarding of a pilot, and control of the vessel at the onshore control center is required to berth at the port. In this study, clustering analysis was used to resolve how to establish control criteria for vessels to enter port when autonomous vessels are operating. K-Means clustering was used to quantitatively stage the arrival pattern based on the accumulated AIS(Automatic Identification System) data of the incoming vessel, and the arrival phase using SOG(Speed over Ground), COG(Course over Ground), and ROT(Rate of Turn) Was divided into six phase.

  • PDF

Gene Screening and Clustering of Yeast Microarray Gene Expression Data (효모 마이크로어레이 유전자 발현 데이터에 대한 유전자 선별 및 군집분석)

  • Lee, Kyung-A;Kim, Tae-Houn;Kim, Jae-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1077-1094
    • /
    • 2011
  • We accomplish clustering analyses for yeast cell cycle microarray expression data. To reflect the characteristics of a time-course data, we screen the genes using the test statistics with Fourier coefficients applying a FDR procedure. We compare the results done by model-based clustering, K-means, PAM, SOM, hierarchical Ward method and Fuzzy method with the yeast data. As the validity measure for clustering results, connectivity, Dunn index and silhouette values are computed and compared. A biological interpretation with GO analysis is also included.

Two Phase Hierarchical Clustering Algorithm for Group Formation in Data Mining (데이터 마이닝에서 그룹 세분화를 위한 2단계 계층적 글러스터링 알고리듬)

  • 황인수
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.189-196
    • /
    • 2002
  • Data clustering is often one of the first steps in data mining analysis. It Identifies groups of related objects that can be used as a starling point for exploring further relationships. This technique supports the development of population segmentation models, such as demographic-based customer segmentation. This paper Purpose to present the development of two phase hierarchical clustering algorithm for group formation. Applications of the algorithm for product-customer group formation in customer relationahip management are also discussed. As a result of computer simulations, suggested algorithm outperforms single link method and k-means clustering.