• Title/Summary/Keyword: K-GBAS

Search Result 27, Processing Time 0.02 seconds

GBAS Ground Testing and Performance Analysis at Gimpo International Airport (김포국제공항의 GBAS 지상시험 및 성능 분석)

  • Jeong, Myeong-Sook;Choi, Yunjung;Yun, Youngsun;Bae, Joongwon;Jun, Hyang-Sig;Lee, Young Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.22-32
    • /
    • 2015
  • Ground based augmentation system (GBAS) is a next generation radio navigation aids to support precision approach of aircraft. Recently, airports installing GBAS and providing GBAS service are increasing all over the world. For the first time in Korea, SLS-4000 which is the GBAS ground equipment of Honeywell had been installed at Gimpo International Airport in 2013, and evaluated its functionality and performance of through the ground testing. This paper introduces a ground test and evaluation criteria on the CAT-I GBAS system, and describes testing methods for GBAS ground testing of Gimpo International Airport. In addition, detail testing methods and analysis results on major five of 12 ground test items are described.

GBAS Flight Testing and Performance Assessment using Flight Inspection Aircraft at Gimpo International Airport (비행검사용 항공기를 이용한 김포국제공항 GBAS 비행시험 및 성능평가)

  • Jeong, Myeong-Sook;Bae, Joongwon;Jun, Hyang-Sig;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2015
  • Ground Based Augmentation System(GBAS) is a system that offers an aircraft within 23 NM radius from the airport precision positioning service and precision approach service using the concept of Differential Global Positioning System(DGPS). After GBAS ground equipment installing at the airport, functionalities and performances of GBAS should be verified through the GBAS ground and flight testing. This paper describes the methods and results for GBAS flight test using the flight inspection aircraft at Gimpo International Airport. From the test results, we confirmed that the VDB data was received without misleading within the VDB coverage of Gimpo International Airport, and VDB field strength, protection level, and course alignment accuracy met the evaluation's criteria.

Preliminary Design of GBAS Onboard Test Equipment

  • Jeong, Myeong-Sook;Ko, Wan-Jin;Bae, Joong Won;Jun, Hyang Sig
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • When the ground subsystem of Ground Based Augmentation System(GBAS) is installed at the airport, the functions and performance of subsystem should be evaluated through ground and flight testing at the pre-commissioning phase. In the case of GBAS flight testing, it can be conducted by the existing flight check aircraft, but the GBAS ground testing requires the development of specially customized equipment to perform the ground testing. Therefore, this paper describes the preliminary design of GBAS onboard test equipment which can be independently used for the GBAS ground testing and flight testing on a car and an aircraft.

A Development of System Design Approval Criteria for GBAS Operation in Korea (국내 GBAS 운용을 위한 시스템 설계 및 제작 승인 기준 개발)

  • Yun, Young-Sun;Kim, Joo-Kyoung;Cho, Jeong-Ho;Nam, Gi-Wook;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.625-632
    • /
    • 2013
  • Since GBAS is a navaid facility to provide precision approach service to aircrafts landing at airports, it must be approved by the air navigation service provider or the aviation regulator to be declared operational. However, Korea has no experience in developing or operating the system so there is no approval criteria for GBAS. In order to develop the criteria in case of the future GBAS procurement, Korea Aerospace Research Institute has been testing the installed commercial GBAS station, SLS-4000, in Gimpo International Airport. This paper summarizes the criteria development results focusing on the system design approval. The criteria have been outlined based on the other leading nations' cases and documentations and established in detail on the basis of the FAA SDA artifacts. Those will be directly used for GBAS approval procedure in Korea and are expected to be useful in system requirement analysis, design, development and artifact management in case of own GNSS-based navaid system development in the future.

Analysis of GPS Signal Environment for GBAS siting in Gimpo International Airport (GBAS 지상시스템 설치후보지 선정을 위한 김포국제공항의 GPS 신호환경 분석)

  • Jeong, Myeong-Sook;Choi, Chul Hee;Ko, Wan-Jin;Ko, Youri;Bae, Joongwon;Jun, Hyang-Sig;Kim, Dong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.70-78
    • /
    • 2013
  • Before GBAS ground systems is installed at the airport, the site survey is needed to determine the suitability of proposed GBAS candidate sites depending on the siting requirements. Therefore, analysis of GPS signal reception environment, one of the site survey steps, is required. In this paper, the number of visible satellites, GPS signal strength, multipath error, radio frequency interference and predicted availability were analyzed using the GPS data of Gimpo International Airport measured by PortaSAT equipments and the analysis results were represented.

A Study on GBAS Curved Approach Flight Test in Taean Airport (태안비행장 GBAS Curved Approach 비행시험에 관한 연구)

  • Kim, Woo-Ri-Ul;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Due to the rapid increase in air traffic worldwide, ICAO has replaced the existing navigation equipment with equipment based on satellite navigation. As a part of that work, ICAO was planning to replace conventional takeoff and landing service using ILS with GBAS. Unlike ILS, GBAS which uses precision approach service inducing aircraft to airport and satellite based augmentation system providing precise position information service surrounding airport is capable of providing a required performance by only a system, regardless of the number of systems, and has an advantage that it is possible curved approach. In this paper, fuel reduction of ILS approach procedures and GBAS curved approach procedures is estimated and determined by flight test in Taean Airport.

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF

European Augmentation Service - a GNSS Monitoring in South Europe Region

  • Gaglione, Salvatore;Pacifico, Armando;Vultaggio, Mario
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.165-170
    • /
    • 2006
  • In the Civil Aviation field, the international trend (through ICAO, EUROCONTROL) is to adopt one positioning system that allows to follow more flight phases. This will allow to release themselves by ground installations and optimize the traffic flows following the aRea Navigation (RNAV) concept. In order to realize this goal the European Scientific Community are focusing on Augmentation Systems based on Satellite infrastructure (SBAS - Satellite Based Augmentation System) and on Ground based ones (GBAS - Ground Based Augmentation System). The goal of this work is to present some results on SBAS and GBAS performances. Regarding SBAS, the Department of Applied Sciences of Parthenope University, after the acquisition of a Novatel OEM4 SBAS receiver has created a monitoring station that reflect as much as possible a standardized measure environment for EGNOS Data Collection Network (EDCN), established by Eurocontrol. The Department of Applied Science has decided to carry out a own monitoring survey to verify the performance of EGNOS that can be achieved in South Europe region, a zone not very covered by official (EDCN) monitoring network. Regarding GBAS, we started from a data set of measurements carried out at the GBAS of Milan-Linate airport where we work on a ground installation (GMS - Ground Monitoring Station) that supervises the GBAS signal and that represent, for our purposes, the Aircraft subsystem. So the set of data collected is to be considered in RTK mode and after the measures session we processed them with the software PEGASUS v 4.11. Both experiences give us the possibility to evaluate the GNSS1 performance that can be achieved.

  • PDF

Ionospheric Storm and Spatial Gradient Analysis for GBAS

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Young-Jae;Jun, Hyang-Sig;Nam, Gi-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.361-365
    • /
    • 2006
  • High ionospheric spatial gradient during ionospheric storm is most concern for the landing approach with GNSS (Global Navigation Satellite System) augmentation systems. In case of the GBAS (Ground-Based Augmentation System), the ionospheric storm causes sudden increase of the ionospheric delay difference between a ground facility and a user (aircraft), and the aircraft position error increases significantly. Since the ionosphere behavior and the storm effect depend on geographic location, understanding the ionospheric storm behavior at specific regional area is crucial for the GNSS augmentation system development and implementation. Korea Aerospace Research Institute and collaborating universities have been developing an integrity monitoring test bed for GBAS research and for future regional augmentation system development. By using the dense GPS (Global Positioning System) networks in Korea, a regional ionosphere map is constructed for finding detailed aspect of the ionosphere variation. Preliminary analysis on the ionospheric gradient variation during a recent storm period is performed and the results are discussed.

  • PDF

DOP Analysis of Ground Based Augmentation System by the Position of Transmitter (송신기 위치에 따른 GBAS 시스템의 DOP 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • In this paper, we describe on the position error of GBAS. In reality, there are many sources which make errors into the calculation of receiver position. It is well known that the DOP of GBAS is an important position error source and is dependent on the numbers and positions of the transmitters. Here, we develop an algorism to calculate the DOP of the GNSS with 2-line transmitters into Korean area. The result is useful to predict the DOP of the positions where transmitters and receivers are located.