• Title/Summary/Keyword: K-ATPase protein

Search Result 229, Processing Time 0.028 seconds

Diabetic Alterations in Cardiac Sarcoplasmic Reticulum $Ca^{2+}$-ATPase and Phospholamban Protein Expression

  • Lee, Hee-Ran;Cho, Yong-Sun;Park, So-Young;Kim, Young-Hoon;Kim, Hae-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.66-66
    • /
    • 2001
  • Diabetic cardiomyopathy has been suggested to be caused by abnormal intracellular $Ca^{2+}$ homeostasis in the myocardium, which is partly due to a defect in calcium transport by the cardiac sarcoplasmic reticulum (SR). In the present study, the underlying mechanism for this functional derangement was investigated with respect to SR $Ca^{2+}$-ATPase and phospholamban (PLB, the inhibitor of SR $Ca^{2+}$-ATPase).(omitted)d)

  • PDF

$Ca^{2+}-induced$ Inhibition of Microsomal ATPases in Soybean Roots (콩 뿌리조직에서의 $Ca^{2+}$에 의한 마이크로솜 이온펌프 활성저해)

  • Cho, Kwang-Hyun;Cho, Kyoung-Soo;Lee, Eun-Hyoung;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.202-208
    • /
    • 1997
  • In order to investigate the mechanisms of epithelial ion transports, microsomes of soybean roots were prepared and the activity of microsomal ATPases was measured by an enzyme-coupled assay. The effects of various ions were evaluated on the total activity of microsomal ATPases and the average activity was 190 nmol/min/mg protein in the control solution containing $10\;mM\;Na^+\;and\;120\;mM\;K^+$. The activities were increased to 150% and decreased to 63% of the control activity in the solution containing $130\;mM\;K^+$ without $Na^+$ and in the solution containing $130\;mM{\;}Na^+$ without $K^+$, respectively. In general, the activity of microsomal ATPase was increased by$K^+$ in a concentration-dependent manner The activity was also increased at lower pH and relatively higher activities were observed in the pH range of $6{\sim}7$. However, the activity was decreased at weak alkaline $pH\;and{\sim}80%$ of the activity was inhibited at pH 9. Since intracellular $Ca^{2+}$ has been known to control the activity of various enzymes, we have investigated the effects of intra-and extrarnicrosomal $Ca^{2+}$ on the activity of microsomal ATPases. The maximal activity was obtained at the extrarnicrosomal $Ca^{2+}$ concentrations below 1 nM. The activity was gradually decreased by increasing $‘Ca^{2+}’$ concentration and 50% inhibition was observed at ${\sim}500{\;}{\mu}M{\;}Ca^{2+}$. The increase in luminal $Ca^{2+}$ concentration also inhibited the activity of microsomal ATPase. When the influx of external $Ca^{2+}$ was induced by $Ca^{2+}$ ionophore A23187 treatment, the activity was decreased by 30%; however, it was recovered by EGTA-induced chelation of $Ca^{2+}$. These results suggest that the presence of $Ca^{2+}$ regulation sites on both cytoplasmi and luminal sides of microsomal ATPases.

  • PDF

Different Distribution of the ${alpha}_{2},Na^+,K^+-ATPase lsoform between Rat Atria and Ventricles$

  • Lee, Jeung-Soo;Lee, Shin-Woong;Wallick, Earl-T
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.381-385
    • /
    • 1996
  • Rat ventricles respond with a biphasic positive inotropic effect to ouabain, low-dose and high-dose effects but rat atria with only a monophasic high dose effect. In an effect to understand the difference in response to ouabain of two tissues between rat atria and ventricles the levels of the $a_{2}$ -isoform of the $Na^{+}$, $K^{+}$-ATPase which has higher affinity for ouabain than the $a_{1}$-iso-form were determined by a $[^{3}H]$ouabain binding assay. The yield of protein per gram wet weight was about 47 mg for atria and 100 mg for ventricles. The $K_{d}$ values of ouabain for the high-affinity ouabain binding site $(a_{2} -isoform)$ were nearly the same (230 nM) in the atria and ventricles. However, the numbers of the $a_{2}$-isoform $(B_{max})$ per mg protein were approximately half in the atria. When the binding data were expressed in unit per gram tissue wet weight, the numbers of $a_{2}$ -isoform in the atria was about 25% of that in the ventricles. THese results demonstrate that the $a_{2}$ -isoform of the $Na^{+}$, $K^{+}$-ATPase in the rat atria could be detected by $[^{3}H]$ouabain binding assay and the levels of this isoform are too low to show the low-dose effect of ouabain.

  • PDF

Altered Regulation of Renal Acid Base Transporters in Response to Ammonium Chloride Loading in Rats

  • Kim, Eun-Young;Choi, Joon-Seok;Lee, Ko-Eun;Kim, Chang-Seong;Bae, Eun-Hui;Ma, Seong-Kwon;Kim, Suhn-Hee;Lee, Jong-Un;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • The role of the kidney in combating metabolic acidosis has been a subject of considerable interest for many years. The present study was aimed to determine whether there is an altered regulation of renal acid base transporters in acute and chronic acid loading. Male Sprague-Dawley rats were used. Metabolic acidosis was induced by administration of $NH_4Cl$ for 2 days (acute) and for 7days (chronic). The serum and urinary pH and bicarbonate were measured. The protein expression of renal acid base transporters [type 3 $Na^+/H^+$ exchanger (NHE3), type 1 $Na^+/{HCO_3}^-$ cotransporter (NBC1), Na-$K^+$ ATPase, $H^+$-ATPase, anion exchanger-1 (AE-1)] was measured by semiquantitative immunoblotting. Serum bicarbonate and pH were decreased in acute acid loading rats compared with controls. Accordingly, urinary pH decreased. The protein expression of NHE3, $H^+$-ATPase, AE-1 and NBC1 was not changed. In chronic acid loading rats, serum bicarbonate and pH were not changed, while urinary pH was decreased compared with controls. The protein expression of NHE3, $H^+$-ATPase was increased in the renal cortex of chronic acid loading rats. These results suggest that unaltered expression of acid transporters combined with acute acid loading may contribute to the development of acidosis. The subsequent increased expression of NHE3, $H^+$-ATPase in the kidney may play a role in promoting acid excretion in the later stage of acid loading, which counteract the development of metabolic acidosis.

Ca2+-ATPase and cAMP-mediated Anti-Apoptotic Effects of Acanthopanax senticosus Extracts on Ischemia/Reperfusion Liver Damages

  • Xie, Guang-Hua;Jeong, Jae-Hun;Choi, Sun Eun;Jeong, Seung Il;Park, Kwang-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.647-653
    • /
    • 2017
  • Hepatic ischemia-reperfusion injury (HIRI) is linked with high mortality rate. Several agents have been developed so far to reduce the risk of HIRI. In this study, we investigated the effects of Acanthopanax senticosus extract (AS) on hepatic ischemia-reperfusion. To explore the protective effects of A. senticosus extract injection (ASI) on hepatic ischemia-reperfusion injury rats animal model were used. After the development of HIRI by using clamping method rats were then randomly divided into five groups. Different doses of AS were administered in HIRI rat model. The level of ALT, AST, and MDA content in serum were detected in sham and HIRI groups. The activity of SOD, MPO and $Ca^{2+}-ATPase$, content of MDA, and cAMP in hepatic tissue were also measured. Expression of Bcl-2 and Bax protein were detected by immunohistochemical staining method. Compared with sham group, ASI has the protective effect on the HIRI model in rats. Blood levels of ALT, AST, SOD, MPO, and MDA were significantly lower in ASI group compared with HIRI. Indeed SOD and $Ca^{2+}-ATPase$ activities, MDA content, and cAMP level were improved in ASI group. Furthermore, Bcl-2 and Bax protein were improved in ASI group compared with only HIRI group. These results suggest that AS may provide potential ameliorative therapy by inhibiting the damage signaling mechanism in hepatic ischemia/reperfusion injury model.

Changes in the Expressional Levels of Sarcoplasmic Reticulum $Ca^{2+}-regulatory$ Proteins in the Postnatal Developing Rat Heart

  • Lee, Eun-Hee;Park, Soo-Sung;Lee, Jae-Sung;Seo, Young-Ju;Kim, Young-Hoon;Kim, Hae-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • In the present study, the postnatal developmental changes in the expressional levels of cardiac sarcoplasmic reticulum (SR) $Ca^{2+}$ regulatory proteins, i.e. $Ca^{2+}-ATPase,$ phospholamban, and $Ca^{2+}$ release channel, were investigated. Both SR $Ca^{2+}-ATPase$ and phospholamban mRNA levels were about 35% of adult levels at birth and gradually increased to adult levels. Protein levels of both SR $Ca^{2+}-ATPase$ and phospholamban, which were measured by quantitative immunoblotting, were closely correlated with the mRNA levels. The initial rates of $Ca^{2+}$ uptake at birth were about 40% of adult rates and also increased gradually during the myocardial development. Consequently, the relative phospholamban/$Ca^{2+}-ATPase$ ratio was 1 in developmental hearts. $Ca^{2+}$ release channel (ryanodine receptor) mRNA was about $50{\sim}60%$ at birth and increased gradually to adult level throughout the postnatal rat heart development. $^3[H]ryanodine$ binding increased gradually during postnatal myocardial development, which was closely correlated with ryanodine mRNA expression levels during the development except the ryanodine mRNA level at birth. These findings indicate that cardiac SR $Ca^{2+}-ATPase,$ phospholamban, and $Ca^{2+}$ release channel are expressed coordinately, which may be necessary for intracellular $Ca^{2+}$ regulation during the rat heart development.

Purification and Characterization of Hrp1, a Homolog of Mouse CHD1 from the Fission Yeast Schizosaccharomyces pombe

  • Yong Hwan Jin;Eung Jae Yoo;Yeun Kyu Jang;Seung Hae Kim;Chee-Gun Lee;Rho Hyun Seong;Seung Hwan Hong;Sang Dai Park
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.539-543
    • /
    • 1998
  • Hrp1, of Schizosaccharomyces pombe, is a new member of the SW12/SNF2 protein family that contains a chromodomain and a DNA binding domain as well as ATPase/7 helicase domains. This configuration suggests that Hrp1 could be a homolog of mouse CHD1, which is thought to function in altering the chromatin structure to facilitate gene expression. To understand the enzymatic nature of Hrp1 we purified the 6-Histidine-tagged Hrp1 protein (6$\times$His-Hrp1) to homogeneity from a S. pombe Hrp1-overexpressing strain and hen examined its biochemical properties. We demonstrate that the purified 6$\times$His-Hrp1 protein exhibited a DNA-binding activity with a moderate preference to the (A+T)-rich tract in double-stranded NA via a minor groove interaction. However, we failed to detect any intrinsic DNA helicase activity from the purified Hrp1 like other SW12/SNF2 proteins. These observations suggest that the DNA binding activities of Hrp1 may be involved in the remodeling of the chromatin structure with DNA-dependent ATPase. We propose that Hrp1 may function in heterochromatins as other proteins with a chromo- or ATPase/helicase domain and play an important role in the determination of chromatin architecture.

  • PDF

Microsomal Proton Transport Activity Measured by Quinacrine Fluorescence from Tomato Roots (Quinacrine 형광을 이용한 토마토 뿌리조직 마이크로솜의 수소이온이동 활성측정)

  • Shin, Dae-Seop;Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.45 no.2
    • /
    • pp.53-58
    • /
    • 2002
  • Quinacrine, a pH-sensitive fluorescence probe, which exists either as an unprotonated fluorescence form or a protonated noufluorescence form, can be used to measure the proton transport activity of $H^+-ATPase$. Quinacrine was used to determine the optimal conditions for measuring the activity of microsomal $H^+-ATPase$ prepared from the roots of tomato plants. The amount of quinacrine fluorescence quenching obtained at $0.43{\mu}g/{\mu}l$ of microsomal protein concentration was 25-26%, which shows that the enzyme activity of 100 nmol/min decreases 10% of quinacrine fluorescence. Maximal fluorescence quenching was obtained at pH 7.0-7.2 and 2 mM $Mg^{2+}$ Because the activity of microsomal $H^+-ATPase$ is also maximal at these conditions, the quinacrine fluorescence well represents the activity of $H^+-ATPase$. Vanadate and $NO_3-$, specific inhibitors of plasma and vacuolar $H^+-ATPases$, respectively, were successfully applied to inhibit the quinacrine fluorescence quenching mediated by the corresponding $H^+-ATPases$. These results imply that quinacrine is a useful tool for measuring the proton transport activities of microsomes obtained from the root tissue of tomato plants.

Effects of Bojungchiseup-tang on Renal Expression of Water Channels, Na, K-ATPase and Nitric Oxide Synthase in Rats (보중치습탕의 백서 신장 수분채널, Na, K-ATPase, 산화질소 합성효소 발현에 미치는 영향)

  • Kang Dae Gill;Kim Jang Giun;Kim Bok Hae;Cho Dong Ki;Sohn Eun Jin;Ryu Do Gon;Lee Ho Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.72-77
    • /
    • 2002
  • The present study was examined the effects of Bojungchiseup-tang water extract on the renal expression of renal function regulatory proteins including aquaporin 2 (AQP 2), aquaporin 3 (AQP 3), Na, K-ATPase α1 subunit, endothelial nitric oxide synthase (ecNOS), and inducible nitric oxide synthase (iNOS) in rats. The renal expression of AQP 3 was attenuated in rats administered with Bojungchiseup-tang water extract without altered expression of AQP 2, while ecNOS was up-regualted. Oral administration of Bojungchiseup-tang water extract (40 ㎕/100 g) also attenuated the renal expression of Na, K-ATPase α1-subunit and iNOS protein. These results suggest that the diuretic and natriuretic effects of Bojungchiseup-tang maybe causely related with a decreased expression of AQP 3 and increased expression of ecNOS.