Microsomal Proton Transport Activity Measured by Quinacrine Fluorescence from Tomato Roots

Quinacrine 형광을 이용한 토마토 뿌리조직 마이크로솜의 수소이온이동 활성측정

  • Shin, Dae-Seop (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Cho, Kwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Agricultural Chemistry Chungbuk National University)
  • 신대섭 (충북대학교 농과대학 농화학과) ;
  • 조광현 (충북대학교 농과대학 농화학과) ;
  • 김영기 (충북대학교 농과대학 농화학과)
  • Published : 2002.05.31

Abstract

Quinacrine, a pH-sensitive fluorescence probe, which exists either as an unprotonated fluorescence form or a protonated noufluorescence form, can be used to measure the proton transport activity of $H^+-ATPase$. Quinacrine was used to determine the optimal conditions for measuring the activity of microsomal $H^+-ATPase$ prepared from the roots of tomato plants. The amount of quinacrine fluorescence quenching obtained at $0.43{\mu}g/{\mu}l$ of microsomal protein concentration was 25-26%, which shows that the enzyme activity of 100 nmol/min decreases 10% of quinacrine fluorescence. Maximal fluorescence quenching was obtained at pH 7.0-7.2 and 2 mM $Mg^{2+}$ Because the activity of microsomal $H^+-ATPase$ is also maximal at these conditions, the quinacrine fluorescence well represents the activity of $H^+-ATPase$. Vanadate and $NO_3-$, specific inhibitors of plasma and vacuolar $H^+-ATPases$, respectively, were successfully applied to inhibit the quinacrine fluorescence quenching mediated by the corresponding $H^+-ATPases$. These results imply that quinacrine is a useful tool for measuring the proton transport activities of microsomes obtained from the root tissue of tomato plants.

Quinacrine은 수소이온 농도변화에 민감한 형광 probe로서 양성자와 결합하지 않은 형광형이나, 양성자와 결합한 비형광형으로 존재한다. 따라서, quinacrine은 $H^+-ATPase$에 의한 수소이온이동 활성 측정에 이용된다. 본 연구에서는 토마조 뿌리조직에서 분리한 마이크로솜에서 quinacrine의 형광성을 이용한 $H^+-ATPase$ 활성측정의 최적 조건을 조사하였다. Quinacrine의 형광변화는 반응용액 중의 단백질 함량이 $0.43{\mu}g/{\mu}l$에서25-26% 감소하여 10%의 quinacrine 형광을 감소시키는 데 약 100nmo1/min의 $H^+-ATPase$ 활성이 필요함을 알 수 있었다. Quinacrine의 최대 형광변화는 pH 7.0-7.2 범위와 $2mM\;Mg^{2+}$ 조건에서 일어났다. 이것은 기존에 보고한 $H^+-ATPase$의 특성과 일치하여, quinacrine의 형광변화가 $H^+-ATPase$의 활성을 잘 반영하고 있음을 보인다. 원형질막 및 액포막 $H^+-ATPase$들의 선택적 저해제인 vanadate와 $NO_3-$는 각각의 효소에 의한 수소이온이동 활성을 저해하는데 성공적임을 확인하였다. 이상의 결과로 quinacrine이 토마토 뿌리조직에서 분리한 마이크로솜의 수소이온이동 활성측정에 유용하게 이용될 수 있음을 확인하였다.

Keywords

References

  1. Morsomme, P. and Boutry, M. (2000) The plant plasma membrane HU-ATPase: structure, function and regulation. Biochim. Biophys. Acta 1465, 1-16 https://doi.org/10.1016/S0005-2736(00)00128-0
  2. Marchesini, N. and Docampo, R. (2002) A plasma membrane P-type $H^+$-ATPase regulates intracellular pH in Leishmaniamexicana anwzonensis. Mol. Biochem. Parasitol. 119, 225-236 https://doi.org/10.1016/S0166-6851(01)00419-4
  3. Bman, Y, Hassidim, M., Lemer, H. R. and Reinhold, L. (1988) Evidence for a NaVHU antiporter in membrane vesicles isolated from roots of the halophyte Atriples numrmdana. Plant Physiot. 87, 104-108 https://doi.org/10.1104/pp.87.1.104
  4. Garbarino, J. and DuPont, F. M. (1988) NaCl induces a $Na^+/H^+$ antiport in tonoplast vesicles from barley roots. Ptant Physiol. 86, 231-236 https://doi.org/10.1104/pp.86.1.231
  5. McClure, P. R., Kochian, L. V., Spanswick, R. M. and Shaff, J. E. (1990) Evidence for cotransport of nitrate and protons in maize roots I. Effects of nitrate on the membrane potential. Plant Physiot. 93, 281-289 https://doi.org/10.1104/pp.93.1.281
  6. McClure, P. R., Kochian, L. V, Spanswick, R. M. and ShaS, J. E. (1990) Evidence for cotransport of nitrate and protons in maize roots II. Measurement of $NO-3^-$ and $H^-$ fluxes with ion-selective microelectrodes. Ptanl Physiol. 93, 290-294
  7. Buckhout, T. J. (1994) Kinetics analysis of the plasma membrane sucrose-$H^+$ symporter from sugar beet (Beta vutgaris L.) leaves. Ptanl Physiol. 106, 991-998
  8. Brune, A., Gonzalez, R, Goren, R., Zehavi, U. and Echevema, E. (1998) Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifoild) juice cells. J. Memb. Biol. 166, 197-203 https://doi.org/10.1007/s002329900461
  9. Rentsch, D., Gorlach, J., Vogt, E., Anirhein, N. and Martinoia, E. (1995) The tonoplast-associated citrate binding protein (CBP) of Hevea brasitiensis. J. Biol. Chem. 270, 30525-30531 https://doi.org/10.1074/jbc.270.51.30525
  10. Sze, H. (1985) $H^+$-translocadng ATPases: advances using membrane vesicles. Ann. Rev. Ptant Physiol. 36, 175-208 https://doi.org/10.1146/annurev.pp.36.060185.001135
  11. Cho, K. H., Sakong, J. and Kirn, Y. K. (1998) Characterization of microsomal ATPases prepared from tomato roots. Agric. Chem. Biotechml. 41, 130-136
  12. Cho, K. H. (1997) Characterixation of microsomal ATPases prepared from soybean roots adn tomato roos. M. S. Thesis. Chungbuk National University.
  13. Lew, R. R. and Spanswick, R. M. (1984) Proton-pumping activities of soybean (Gtycine max L.) root microsomes: localization and sensitivity to nitrate and vanadate. Plant Sci. Lett. 36, 187-193 https://doi.org/10.1016/0304-4211(84)90167-6
  14. C1erc, S. and Barenholz, Y. (1998) A quantitative model for using achdine orange as a transmembrane pH gradient probe. Anal. Biochem. 259, 104-111 https://doi.org/10.1006/abio.1998.2639
  15. Palmgren, M. G. (1991) Acndine orange as a probe for measuring pH gradients across membranes: mechanism and limitations. Anal. Biochem. 192, 316-321 https://doi.org/10.1016/0003-2697(91)90542-2
  16. Tavakoli, N., Kluge, C., Golldack, K., Minira, T. and Dietz, K J. (2001) Reversible redox control of plant vacuolar $H^+$-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant J. 28, 51-59 https://doi.org/10.1046/j.1365-313X.2001.01130.x
  17. Lee, H. C. and Forte, J. G. (1978) A study of $H^+$ transport in gastric microsomal vesicles using fluorescent probes. Biochim. Biophys. Acta 508, 339-356
  18. Lowry, 0. H., Rosebrough, N. J., Fan-, A. L. and Randall, R. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  19. Pa1mgren, M. G., Askerlund, P., Frednkson, K., Widell, S., Sommarin, M. and Larsson, C. (1990) Sealed inside-out and right-side-out plasma membrane vesicles. Ptant Physiol. 92, 871-880 https://doi.org/10.1104/pp.92.4.871
  20. Cho, K. H., Sakong, J. and Kim, Y. K. (2001) Inhibition of microsomal ATPases by high concentration of $Mg^{2+}$ in tracheal epithelial cells. Life Sci. 69, 2875-2886 https://doi.org/10.1016/S0024-3205(01)01358-3