Browse > Article

Microsomal Proton Transport Activity Measured by Quinacrine Fluorescence from Tomato Roots  

Shin, Dae-Seop (Department of Agricultural Chemistry, Chungbuk National University)
Cho, Kwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University)
Kim, Young-Kee (Department of Agricultural Chemistry Chungbuk National University)
Publication Information
Applied Biological Chemistry / v.45, no.2, 2002 , pp. 53-58 More about this Journal
Abstract
Quinacrine, a pH-sensitive fluorescence probe, which exists either as an unprotonated fluorescence form or a protonated noufluorescence form, can be used to measure the proton transport activity of $H^+-ATPase$. Quinacrine was used to determine the optimal conditions for measuring the activity of microsomal $H^+-ATPase$ prepared from the roots of tomato plants. The amount of quinacrine fluorescence quenching obtained at $0.43{\mu}g/{\mu}l$ of microsomal protein concentration was 25-26%, which shows that the enzyme activity of 100 nmol/min decreases 10% of quinacrine fluorescence. Maximal fluorescence quenching was obtained at pH 7.0-7.2 and 2 mM $Mg^{2+}$ Because the activity of microsomal $H^+-ATPase$ is also maximal at these conditions, the quinacrine fluorescence well represents the activity of $H^+-ATPase$. Vanadate and $NO_3-$, specific inhibitors of plasma and vacuolar $H^+-ATPases$, respectively, were successfully applied to inhibit the quinacrine fluorescence quenching mediated by the corresponding $H^+-ATPases$. These results imply that quinacrine is a useful tool for measuring the proton transport activities of microsomes obtained from the root tissue of tomato plants.
Keywords
quinacrine; proton transport; $H^+-ATPase$; tomato roots;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morsomme, P. and Boutry, M. (2000) The plant plasma membrane HU-ATPase: structure, function and regulation. Biochim. Biophys. Acta 1465, 1-16   DOI   PUBMED   ScienceOn
2 Bman, Y, Hassidim, M., Lemer, H. R. and Reinhold, L. (1988) Evidence for a NaVHU antiporter in membrane vesicles isolated from roots of the halophyte Atriples numrmdana. Plant Physiot. 87, 104-108   DOI   ScienceOn
3 Marchesini, N. and Docampo, R. (2002) A plasma membrane P-type $H^+$-ATPase regulates intracellular pH in Leishmaniamexicana anwzonensis. Mol. Biochem. Parasitol. 119, 225-236   DOI   ScienceOn
4 McClure, P. R., Kochian, L. V, Spanswick, R. M. and ShaS, J. E. (1990) Evidence for cotransport of nitrate and protons in maize roots II. Measurement of $NO-3^-$ and $H^-$ fluxes with ion-selective microelectrodes. Ptanl Physiol. 93, 290-294
5 Tavakoli, N., Kluge, C., Golldack, K., Minira, T. and Dietz, K J. (2001) Reversible redox control of plant vacuolar $H^+$-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant J. 28, 51-59   DOI   ScienceOn
6 Lee, H. C. and Forte, J. G. (1978) A study of $H^+$ transport in gastric microsomal vesicles using fluorescent probes. Biochim. Biophys. Acta 508, 339-356
7 Cho, K. H. (1997) Characterixation of microsomal ATPases prepared from soybean roots adn tomato roos. M. S. Thesis. Chungbuk National University.
8 Buckhout, T. J. (1994) Kinetics analysis of the plasma membrane sucrose-$H^+$ symporter from sugar beet (Beta vutgaris L.) leaves. Ptanl Physiol. 106, 991-998
9 Pa1mgren, M. G., Askerlund, P., Frednkson, K., Widell, S., Sommarin, M. and Larsson, C. (1990) Sealed inside-out and right-side-out plasma membrane vesicles. Ptant Physiol. 92, 871-880   DOI   ScienceOn
10 Garbarino, J. and DuPont, F. M. (1988) NaCl induces a $Na^+/H^+$ antiport in tonoplast vesicles from barley roots. Ptant Physiol. 86, 231-236   DOI   ScienceOn
11 Cho, K. H., Sakong, J. and Kim, Y. K. (2001) Inhibition of microsomal ATPases by high concentration of $Mg^{2+}$ in tracheal epithelial cells. Life Sci. 69, 2875-2886   DOI   ScienceOn
12 Lowry, 0. H., Rosebrough, N. J., Fan-, A. L. and Randall, R. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
13 C1erc, S. and Barenholz, Y. (1998) A quantitative model for using achdine orange as a transmembrane pH gradient probe. Anal. Biochem. 259, 104-111   DOI   ScienceOn
14 Cho, K. H., Sakong, J. and Kirn, Y. K. (1998) Characterization of microsomal ATPases prepared from tomato roots. Agric. Chem. Biotechml. 41, 130-136
15 McClure, P. R., Kochian, L. V., Spanswick, R. M. and Shaff, J. E. (1990) Evidence for cotransport of nitrate and protons in maize roots I. Effects of nitrate on the membrane potential. Plant Physiot. 93, 281-289   DOI   ScienceOn
16 Palmgren, M. G. (1991) Acndine orange as a probe for measuring pH gradients across membranes: mechanism and limitations. Anal. Biochem. 192, 316-321   DOI   PUBMED   ScienceOn
17 Rentsch, D., Gorlach, J., Vogt, E., Anirhein, N. and Martinoia, E. (1995) The tonoplast-associated citrate binding protein (CBP) of Hevea brasitiensis. J. Biol. Chem. 270, 30525-30531   DOI   PUBMED
18 Brune, A., Gonzalez, R, Goren, R., Zehavi, U. and Echevema, E. (1998) Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifoild) juice cells. J. Memb. Biol. 166, 197-203   DOI   ScienceOn
19 Sze, H. (1985) $H^+$-translocadng ATPases: advances using membrane vesicles. Ann. Rev. Ptant Physiol. 36, 175-208   DOI   ScienceOn
20 Lew, R. R. and Spanswick, R. M. (1984) Proton-pumping activities of soybean (Gtycine max L.) root microsomes: localization and sensitivity to nitrate and vanadate. Plant Sci. Lett. 36, 187-193   DOI   ScienceOn