• Title/Summary/Keyword: K doping

Search Result 1,870, Processing Time 0.034 seconds

Substitutional boron doping of carbon materials

  • Ha, Sumin;Choi, Go Bong;Hong, Seungki;Kim, Doo Won;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.27
    • /
    • pp.1-11
    • /
    • 2018
  • A simple, but effective means of tailoring the physical and chemical properties of carbon materials should be secured. In this sense, chemical doping by incorporating boron or nitrogen into carbon materials has been examined as a powerful tool which provides distinctive advantages over exohedral doping. In this paper, we review recent results pertaining methods by which to introduce boron atoms into the $sp^2$ carbon lattice by means of high-temperature thermal diffusion, the properties induced by boron doping, and promising applications of this type of doping. We envisage that intrinsic boron doping will accelerate both scientific and industrial developments in the area of carbon science and technology in the future.

Effects of Laser Doping on Selective Emitter Si Solar Cells (레이져를 이용한 도핑 특성과 선택적 도핑 에미터 실리콘 태양전지의 제작)

  • Park, Sungeun;Park, Hyomin;Nam, Junggyu;Yang, JungYup;Lee, Dongho;Min, Byoung Koun;Kim, Kyung Nam;Park, Se Jin;Lee, Hae-Seok;Kim, Donghwan;Kang, Yoonmook;Kim, Dongseop
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.54-58
    • /
    • 2016
  • Laser-doped selective emitter process requires dopant source deposition, spin-on-glass, and is able to form selective emitter through SiNx layer by laser irradiation on desired locations. However, after laser doping process, the remaining dopant layer needs to be washed out. Laser-induced melting of pre-deposited impurity doping is a precise selective doping method minimizing addition of process steps. In this study, we introduce a novel scheme for fabricating highly efficient selective emitter solar cell by laser doping. During this process, laser induced damage induces front contact destabilization due to the hindrance of silver nucleation even though laser doping has a potential of commercialization with simple process concept. When the laser induced damage is effectively removed using solution etch back process, the disadvantage of laser doping was effectively removed. The devices fabricated using laser doping scheme power conversion efficiency was significantly improved about 1% abs. after removal the laser damages.

The effect of surface texturization on the thermal and electric characteristics of photovoltaic devices (표면 texturizaton에 따른 photovoltaic device의 열적 전기적 특성)

  • Jung, Ji-Chul;Jung, Byung-Eon;Lee, Jung-Ho;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.133-133
    • /
    • 2010
  • We studied the thermal and electric effect of 2D and 3D p-n photovoltaic diode structures with and without surface texturing. By analyzing the numerical simulation results of I-V characteristics and lattice temperature distributions, we systematically studied the effect of different texturing structures and different doping concentration on the characteristics of the silicon p-n photovoltaic devices. The, efficiency of the device with the surface texturing shows more than ~ 2% enhancement compared to the reference devices without texturing. The tendency of the efficiency of doping concentration has been studied with boron doping of $10^{14}{\sim}10^{17}cm^{-3}$ and phosphorus doping of $10^{15}cm^{-3}$. In addition to that, the study of changing phosphorus doping of $10^{15}{\sim}10^{18}cm^{-3}$ with boron doping of $10^{14}cm^{-3}$ has been examined. It has been shown that the texturing structure not only improves the light trapping but also plays an important role in the heat radiation.

  • PDF

Electromigration in Molten-phase Ge2Sb2Te5 and Effects of Doping on Atomic Migration Rate

  • Joo, Young-Chang;Yang, Tae-Youl;Cho, Ju-Young;Park, Yong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.43-47
    • /
    • 2012
  • Electromigration in molten $Ge_2Sb_2Te_5$ (GST) was characterized using pulsed DC stress to an isolated line structure. When an electrical pulse was applied to the GST, GST lines were melted by Joule heating, and Ge and Sb atoms migrate to the cathode, whereas Te atoms migrate to the anode. This elemental separation in the molten GST was caused by an electrostatic force-induced electromigration. The effects of O-, N-, and Bi-doping on the electromigration were also investigated, and atomic mobility changes by the doping were investigated by quantifying $DZ^*$ values. The Bi -doping did not affect the $DZ^*$ values of the constituent atoms in the molten GST, but the D$DZ^*$ values decreased by O-doping and N-doping.

Threshold Voltage Control of a-Si TFT by Delta Doping of Phosphorous

  • Soh, Hoe-Sup;Kim, Cheol-Se;Kim, Eung-Do
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1165-1167
    • /
    • 2007
  • Delta doping method can separate the threshold voltage control region from the charge transport region in a-Si TFT, whereby the threshold voltage of a TFT could be modified. Threshold voltage could be changed by delta doping, while field effect mobility was estimated to be 80% of that of standard TFT.

  • PDF

Hole-Trapping in Iodine-Doped Pentacene Films at Low Temperatures

  • Yun, W.J.;Cho, J.M.;Lee, J.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.70-73
    • /
    • 2006
  • Pentacene films, grown on polyethylene terephthalate (PET) substrates, were doped with Iodine. ESR measurements were made for the films in the temperature range of 100-300 K. Two regimes of doping stages were discernible: a light (intercalation) doping regime and a heavy doping regime. The light doping regime was concluded to be dominated by localized holes that were trapped at low temperatures, which indicated trap states near the valence band edge.

  • PDF

Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) Imide Based Electrolytes as a Function of Lithium Bis(trifluoromethanesulfonyl) Imide Doping

  • Kim, Jae-Kwang;Lim, Du-Hyun;Scheers, Johan;Pitawala, Jagath;Wilken, Susanne;Johansson, Patrik;Ahn, Jou-Hyeon;Matic, Aleksandar;Jacobsson, Per
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.92-97
    • /
    • 2011
  • In this study we have investigated the Li-ion coordination, thermal behavior and electrochemical stability of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ($Py_{14}TFSI$) with lithium bis(trifluoromethanesulfony)imide (LiTFSI) doping intended for use as electrolytes for lithium batteries. The ionic conductivity is reduced and glass transition temperature ($T_g$) increases with LiTFSI doping concentration. Also, the electrochemical stability increases with LiTFSI doping. A high LiTFSI doping could enhance the electrochemical stability of electrolytes for lithium batteries, whereas the decrease in the ionic conductivity limits the capacity of the battery.

Simultaneous Analysis of Stimulants and Narcotic Analgesics by Capillary Column Gas Chromatography with Nitrogen Phosphorus Detector (Capillary Column Gas Chromatography/Nitrogen Phosphorus Detector를 이용한 흥분제 및 마약성 진통제의 동시분석에 관한 연구)

  • Lho, Dong-Seok;Shin, Ho-Sang;Kang, Bo-Kyung;Paek, Heang-Kee;Kim, Seung-Ki;Lee, Jeong-Ae;Kim, Young-Lim;Park, Jong-Sei
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.659-666
    • /
    • 1991
  • A systematic analysis of 18 stimulants and narcotic analgesics containing nitrogen atom (s) in human urine by gas chromatography with nitrogen phosphorus detector (GC-NPD), is described. The urinary extract with diethyl ether at pH 8.5 showed good recoveries of the drugs and less interference peaks on GC chromatogram. Retention data were standardized by the calculation of relative retention times using diphenylamine as the internal standard. The relative standard deviations of retention times were less than 0.1% for the within-run analyses. The response factor (RRF) of a drug relative to the internal standard was calculated. RRF decreased with increasing number of nitrogen atoms. This technique can be adapted to various analytical toxicology problems.

  • PDF

The Characteristics of $GaAs_{0.35}P_{0.65}$ Epitaxial Layer According to in-situ doping of $NH_3$ gas (In-situ $NH_3$ doping에 따른 $GaAs_{0.35}P_{0.65}$ 에피막의 특성)

  • Lee, Eun-Cheol;Lee, Cheol-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1249-1251
    • /
    • 1998
  • We have studied the properties of $GaAs_{0.35}P_{0.65}$ epitaxial films on the GaP according to doping of $NH_3$ gas using VPE method by CVD. The efficiency of $GaAs_{0.35}P_{0.65}$ epitaxial films found to be greatly enhanced by the according of nitrogen doping. The diodes were fabricated by means of Zn diffusion into vapor grown $GaAs_{0.35}P_{0.65}$ epitaxial films doped with N and Te. The effects of nitrogen doping on carrier density of epitaxial films, PL wavelength and the power out, forward voltage of diodes are discussed. In the end, The effect of electrical and optical properties is influenced by the deep level and deep level density of nitrogen doping.

  • PDF

Toward Charge Neutralization of CVD Graphene

  • Kim, Soo Min;Kim, Ki Kang
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.268-272
    • /
    • 2015
  • We report the systematic study to reduce extrinsic doping in graphene grown by chemical vapor deposition (CVD). To investigate the effect of crystallinity of graphene on the extent of the extrinsic doping, graphene samples with different levels of crystal quality: poly-crystalline and single-crystalline graphene (PCG and SCG), are employed. The graphene suspended in air is almost undoped regardless of its crystallinity, whereas graphene placed on an $SiO_2/Si$ substrate is spontaneously p-doped. The extent of p-doping from the $SiO_2$ substrate in SCG is slightly lower than that in PCG, implying that the defects in graphene play roles in charge transfer. However, after annealing treatment, both PCG and SCG are heavily p-doped due to increased interaction with the underlying substrate. Extrinsic doping dramatically decreases after annealing treatment when PCG and SCG are placed on the top of hexagonal boron nitride (h-BN) substrate, confirming that h-BN is the ideal substrate for reducing extrinsic doping in CVD graphene.