Browse > Article
http://dx.doi.org/10.5714/CL.2018.27.001

Substitutional boron doping of carbon materials  

Ha, Sumin (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
Choi, Go Bong (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
Hong, Seungki (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
Kim, Doo Won (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Kim, Yoong Ahm (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
Publication Information
Carbon letters / v.27, no., 2018 , pp. 1-11 More about this Journal
Abstract
A simple, but effective means of tailoring the physical and chemical properties of carbon materials should be secured. In this sense, chemical doping by incorporating boron or nitrogen into carbon materials has been examined as a powerful tool which provides distinctive advantages over exohedral doping. In this paper, we review recent results pertaining methods by which to introduce boron atoms into the $sp^2$ carbon lattice by means of high-temperature thermal diffusion, the properties induced by boron doping, and promising applications of this type of doping. We envisage that intrinsic boron doping will accelerate both scientific and industrial developments in the area of carbon science and technology in the future.
Keywords
boron atom; substitution; Raman; p-type doping; active site;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agnoli S, Favaro M. Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J Mater Chem A, 4, 5002 (2016). https://doi.org/10.1039/c5ta10599d.   DOI
2 Lowell CE. Solid solution of boron in graphite. J Am Ceram Soc, 50, 142 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15064.x.   DOI
3 Kouvetakis J, Kaner RB, Sattler ML, Barlett N. A novel graphitelike material of composition $BC_3$, and nitrogen-carbon graphites. J Chem Soc Chem Commun, 24, 1758 (1986). https://doi.org/10.1039/c39860001758.
4 Marchand A. Electronic properties of doped carbons. In: Walker PL, ed. Chemistry and Physics of Carbon, Marcel Dekker, New York, 155 (1971).
5 Endo M, Hayashi T, Hong SH, Enoki T, Dresselhaus MS. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. J Appl Phys, 90, 5670 (2001). https://doi.org/10.1063/1.1409581.   DOI
6 Hach CT, Jones LE, Crossland C, Thrower PA. An investigation of vapor deposited boron rich carbon-a novel graphite-like material-part I: the structure of BCx (C6B) thin films. Carbon, 37, 221 (1999). https://doi.org/10.1016/s0008-6223(98)00166-3.   DOI
7 Matthews MJ, Dresselhaus MS, Dresselhaus G, Endo M, Nishimura Y, Hiraoka T, Tamaki N. Magnetic alignment of mesophase pitch-based carbon fibers. Appl Phys Lett, 69, 430 (1996). https://doi.org/10.1063/1.118084.   DOI
8 Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sic, 6, 2839 (2013). https://doi.org/10.1039/c3ee41444b.   DOI
9 Deng Y, Xie Y, Zou K, Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A, 4, 1144 (2016). https://doi.org/10.1039/c5ta08620e.   DOI
10 Vavro J, Kikkawa JM, Fischer JE. Metal-insulator transition in doped single-wall carbon nanotubes. Phys Rev B, 71, 155410 (2005). https://doi.org/10.1103/physrevb.71.155410.   DOI
11 Menon R, Yoon CO, Moses D, Heeger AJ, Cao Y. Transport in polyaniline near the critical regime of the metal-insulator transition. Phys Rev B, 48, 17685 (1993). https://doi.org/10.1103/physrevb.48.17685.   DOI
12 Kumari L, Prasad V, Subramanyam SV. Effect of iodine incorporation on the electrical properties of amorphous conducting carbon films. Carbon, 41, 1841 (2003). https://doi.org/10.1016/s0008-6223(03)00172-6.   DOI
13 Kumari L, Subramanyam SV, Eto S, Takai K, Enoki T. Metal-insulator transition in iodinated amorphous conducting carbon films. Carbon, 42, 2133 (2004). https://doi.org/10.1016/j.carbon.2004.04.019.   DOI
14 Fung AWP, Dresselhaus MS, Endo M. Transport properties near the metal-insulator transition in heat-treated activatedrotect carbon fibers. Phys Rev B, 48, 14953 (1993). https://doi.org/10.1103/physrevb.48.14953.   DOI
15 Vora PM, Gopu P, Rosario-Canales M, Perez CR, Gogotsi Y, Santiago-Aviles JJ, Kikkawa JM. Correlating magnetotransport and diamagnetism ofsp2-bonded carbon networks through the metalinsulator transition. Phys Rev B, 84, 155114 (2011). https://doi.org/10.1103/physrevb.84.155114.   DOI
16 Kim YA, Aoki S, Fujisawa K, Ko YI, Yang KS, Yang CM, Jung YC, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Defectassisted heavily and substitutionally boron-doped thin multiwalled carbon nanotubes using high-temperature thermal diffusion. J Phys Chem C, 118, 4454 (2014). https://doi.org/10.1021/jp410732r.   DOI
17 Endo M, Kim C, Nishimura K, Fujino T, Miyashita K. Recent development of carbon materials for Li ion batteries. Carbon, 38, 183 (2000). https://doi.org/10.1016/s0008-6223(99)00141-4.   DOI
18 Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R. Studying Disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys, 9, 1276 (2007). https://doi.org/10.1039/b613962k.   DOI
19 Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett, 10, 751 (2010). https://doi.org/10.1021/nl904286r.   DOI
20 Saito R, Grüneis A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jorio A, Cançado LG, Fantini C, Pimenta MA, Souza Filho AG. Double resonance Raman spectroscopy of singlewall carbon nanotubes. New J Phys, 5, 157 (2003). https://doi.org/10.1088/1367-2630/5/1/157.   DOI
21 Lucchese MM, Stavale F, Martins Ferreira EH, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48, 1592 (2010). https://doi.org/10.1016/j.carbon.2009.12.057.   DOI
22 Cancado LG, Jorio A, Martins Ferreira EH, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala T, Ferrari AC. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett, 11, 3190 (2011). https://doi.org/10.1021/nl201432g.   DOI
23 Tang YB, Yin LC, Yang Y, Bo XH, Cao YL, Wang HE, Zhang WJ, Bello I, Lee ST, Cheng HM, Lee CS. Tunable band gaps and ptype transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano, 6, 1970 (2012). https://doi.org/10.1021/nn3005262.   DOI
24 Fujisawa K, Hayashi T, Endo M, Terrones M, Kim JH, Kim YA. Effect of boron doping on the electrical conductivity of metallicityseparated single walled carbon nanotubes. Nanoscale, 10, 12723 (2018). https://doi.org/10.1039/c8nr02323a.   DOI
25 Mott NF. Conduction in Non-crystalline Materials, Oxford University Press, Oxford (1987).
26 Munoz-Navia M, Dorantes-Davila J, Terrones M, Hayashi T, Kim YA, Endo M, Dresselhaus MS, Terrones H. Synthesis and electronic properties of coalesced graphitic nanocones. Chem Phys Lett, 407, 327 (2005). https://doi.org/10.1016/j.cplett.2005.03.095.   DOI
27 Shklovskii BI, Efros AL. Electronic Properties of Doped Semiconductors, Springer-Verlag, Berlin (1984).
28 Rotkin SV, Gogotsi Y. Analysis of non-planar graphitic structures: from arched edge planes of graphite crystals to nanotubes. Mater Res Innovations, 5, 191 (2000). https://doi.org/10.1007/s10019-001-0152-4.
29 Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS. Microstructural changes induced in "stacked cup" carbon nanofibers by heat treatment. Carbon, 41, 1941 (2003). https://doi.org/10.1016/s0008-6223(03)00171-4.
30 Campos-Delgado J, Kim YA, Hayashi T, Morelos-Gomez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull RD, Dresselhaus MS, Terrones M. Thermal stability studies of CVDgrown graphene nanoribbons: defect annealing and loop formation. Chem Phys Lett, 469, 177 (2009). https://doi.org/10.1016/j.cplett.2008.12.082.   DOI
31 Jia X, Campos-Delgado J, Gracia-Espino EE, Hofmann M, Muramatsu H, Kim YA, Hayashi T, Endo M, Kong J, Terrones M, Dresselhaus MS. Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom, 27, 1996 (2009). https://doi.org/10.1116/1.3148829.   DOI
32 Fujisawa K, Hasegawa T, Shimamoto D, Muramatsu H, Jung YC, Hayashi T, Kim YA, Endo M. Boron atoms as Loop accelerator and surface stabilizer in platelet-type carbon nanofibers. ChemPhysChem, 11, 2345 (2010). https://doi.org/10.1002/cphc.201000298.   DOI
33 Kinoshita K. Carbon: Electrochemical and Physicochemical Properties, Wiley, New York (1988).
34 Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401 (2006). https://doi.org/10.1103/physrevlett.97.187401.   DOI
35 Nakamura J, Matsudaira M, Haruyama J, Sugiura H, Tachibana M, Reppert J, Rao A, Nishio T, Hasegawa Y, Sano H, Iye Y. Pressure-induced superconductivity in boron-doped buckypapers. Appl Phys Lett, 95, 142503 (2009). https://doi.org/10.1063/1.3242016.   DOI
36 Hennig G. Diffusion of boron in graphite. J Chem Phys, 42, 1167 (1965). https://doi.org/10.1063/1.1696098.   DOI
37 Casalegno A, Marchesi R. DMFC anode polarization: experimental analysis and model validation. J Power Source, 175, 372 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.003.   DOI
38 Acharya CK, Turner CH. Stabilization of platinum clusters by substitutional boron dopants in carbon supports. J Phys Chem B, 110, 17706 (2006). https://doi.org/10.1021/jp063618p.   DOI
39 Acharya CK, Sullivan DI, Turner CH. Characterizing the interaction of Pt and PtRu clusters with boron-doped, nitrogen-doped, and activated carbon: density functional theory calculations and parameterization. J Phys Chem C, 112, 13607 (2008). https://doi.org/10.1021/jp8034488.   DOI
40 Acharya CK, Turner CH. Effect of an electric field on the adsorption of metal clusters on boron-doped carbon surfaces. J Phys Chem C, 111, 14804 (2007). https://doi.org/10.1021/jp073643a.   DOI
41 Weller TE, Ellerby M, Saxena SS, Smith RP, Skipper NT. Superconductivity in the intercalated graphite compounds $C_6Yb$ and $C_6Ca$. Nat Phys, 1, 39 (2005). https://doi.org/10.1038/nphys0010.   DOI
42 Haruyama J, Matsudaira M, Reppert J, Rao A, Koretsune T, Saito S, Sano H, Iye Y. Superconductivity in boron-doped carbon nanotubes. J Supercond Novel Magn, 24, 111 (2011). https://doi.org/10.1007/s10948-010-0906-6.   DOI
43 Emery N, Herold C, d'Astuto M, Garcia V, Bellin C, Mareche, JF, Lagrange P, Loupias G. Superconductivity of Bulk $CaC_6$. Phys Rev Lett, 95, 087003 (2005). https://doi.org/10.1103/physrevlett.95.087003.   DOI
44 Ekimov EA, Sidorov V A, Bauer ED, Mel'Nik NN, Curro NJ, Thompson JD, Stishov SM. Superconductivity in diamond. Nature, 428, 542 (2004). https://doi.org/10.1038/nature02449.   DOI
45 Murata N, Haruyama J, Reppert J, Rao AM, Koretsune T, Saito S, Matsudaira M, Yagi Y. Superconductivity in thin films of boron-doped carbon nanotubes. Phys Rev Lett, 101, 027002 (2008). https://doi.org/10.1103/physrevlett.101.027002.   DOI
46 Fujisawa K, Cruz-Silva R, Yang KS, Kim YA, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. J Mater Chem A, 2, 9532 (2014). https://doi.org/10.1039/c4ta00936c.   DOI
47 Ma X, Wang Q, Chen LQ, Cermignani W, Schobert HH, Pantano CG. Semi-empirical studies on electronic structures of a boron-doped graphene layer-implications on the oxidation mechanism. Carbon, 35, 1517 (1997). https://doi.org/10.1016/s0008-6223(97)00102-4.   DOI
48 Radovic LR, Karra M, Skokova K, Thrower PA. The role of substitutional boron in carbon oxidation. Carbon, 36, 1841 (1998). https://doi.org/10.1016/s0008-6223(98)00156-0.   DOI
49 Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 323, 760 (2009). https://doi.org/10.1126/science.1168049.   DOI
50 Terrones H, Hayashi T, Munoz-Navia M, Terrones M, Kim YA, Grobert N, Kamalakaran R, Dorantes-Dávila J, Escudero R, Dresselhaus MS, Endo M. Graphitic cones in palladium catalysed carbon nanofibres. Chem Phys Lett, 343, 241 (2001). https://doi.org/10.1016/s0009-2614(01)00718-7.   DOI
51 Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett, 80, 1267 (2002). https://doi.org/10.1063/1.1450264.   DOI
52 Campos-Delgado J, Romo-Herrera JM, Jia X, Cullen DA, Muramatsu H, Kim YA, Hayashi T, Ren Z, Smith DJ, Okuno Y, Ohaba T, Kanoh H, Kaneko K, Endo M, Terrones H, Dresselhaus MS, Terrones M. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett, 8, 2773 (2008). https://doi.org/10.1021/nl801316d.   DOI
53 Besenhard JO, Winter M, Yang J, Biberacher W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J Power Sources, 54, 228 (1995). https://doi.org/10.1016/0378-7753(94)02073-c.   DOI
54 Béguin F, Chevallier F, Vix-Guterl C, Saadallah S, Bertagna V, Rouzaud JN, Frackowiak E. Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon, 43, 2160 (2005). https://doi.org/10.1016/j.carbon.2005.03.041.   DOI
55 Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM, Son H B, Hsieh YP, Reina A, Kong J, Ter-rones M, Dresselhaus MS. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science, 323, 1701 (2009). https://doi.org/10.1126/science.1166862.   DOI
56 Rodriguez NM, Chambers A, Baker RTK. Catalytic engineering of carbon nanostructures. Langmuir, 11, 3862 (1995). https://doi.org/10.1021/la00010a042.   DOI
57 Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, siroma Z, Uchimoto Y, Yasuda K, Kimijima K-I, Iwashita N. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev, 107, 3904 (2007). https://doi.org/10.1021/cr050182l.   DOI
58 Dai L, Xue Y, Qu L, Choi HJ, Baek JB. Metal-free catalysts for oxygen reduction reaction. Chem Rev, 115, 4823 (2015). https://doi.org/10.1021/cr5003563.   DOI
59 Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351, 361 (2016). https://doi.org/10.1126/science.aad0832.   DOI
60 Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem, 22, 390 (2012). https://doi.org/10.1039/c1jm14694g.   DOI
61 Smalley RE. Doping the fullerenes. ACS Symp Ser, 481, 141 (1992). https://doi.org/10.1021/bk-1992-0481.ch010.
62 Duclaux L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon, 40, 1751 (2002). https://doi.org/10.1016/s0008-6223(02)00043-x.   DOI
63 Ewels CP, Glerup M. Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol, 5, 1345 (2005). https://doi.org/10.1166/jnn.2005.304.   DOI
64 Terrones M, Jorio A, Endo M, Rao AM, Kim YA, Hayashi T, Terrones H, Charlier JC, Dresselhaus G, Dresselhaus MS. New direction in nanotube science. Mater Today, 7, 30 (2004). https://doi.org/10.1016/s1369-7021(04)00447-x.
65 Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal, 2, 781 (2012). https://doi.org/10.1021/cs200652y.   DOI