DOI QR코드

DOI QR Code

Substitutional boron doping of carbon materials

  • Ha, Sumin (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Choi, Go Bong (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Hong, Seungki (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Kim, Doo Won (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Yoong Ahm (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
  • Received : 2017.10.28
  • Accepted : 2017.11.15
  • Published : 2018.07.31

Abstract

A simple, but effective means of tailoring the physical and chemical properties of carbon materials should be secured. In this sense, chemical doping by incorporating boron or nitrogen into carbon materials has been examined as a powerful tool which provides distinctive advantages over exohedral doping. In this paper, we review recent results pertaining methods by which to introduce boron atoms into the $sp^2$ carbon lattice by means of high-temperature thermal diffusion, the properties induced by boron doping, and promising applications of this type of doping. We envisage that intrinsic boron doping will accelerate both scientific and industrial developments in the area of carbon science and technology in the future.

Keywords

References

  1. Smalley RE. Doping the fullerenes. ACS Symp Ser, 481, 141 (1992). https://doi.org/10.1021/bk-1992-0481.ch010.
  2. Duclaux L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon, 40, 1751 (2002). https://doi.org/10.1016/s0008-6223(02)00043-x.
  3. Ewels CP, Glerup M. Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol, 5, 1345 (2005). https://doi.org/10.1166/jnn.2005.304.
  4. Terrones M, Jorio A, Endo M, Rao AM, Kim YA, Hayashi T, Terrones H, Charlier JC, Dresselhaus G, Dresselhaus MS. New direction in nanotube science. Mater Today, 7, 30 (2004). https://doi.org/10.1016/s1369-7021(04)00447-x.
  5. Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal, 2, 781 (2012). https://doi.org/10.1021/cs200652y.
  6. Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sic, 6, 2839 (2013). https://doi.org/10.1039/c3ee41444b.
  7. Deng Y, Xie Y, Zou K, Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A, 4, 1144 (2016). https://doi.org/10.1039/c5ta08620e.
  8. Agnoli S, Favaro M. Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J Mater Chem A, 4, 5002 (2016). https://doi.org/10.1039/c5ta10599d.
  9. Lowell CE. Solid solution of boron in graphite. J Am Ceram Soc, 50, 142 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15064.x.
  10. Kouvetakis J, Kaner RB, Sattler ML, Barlett N. A novel graphitelike material of composition $BC_3$, and nitrogen-carbon graphites. J Chem Soc Chem Commun, 24, 1758 (1986). https://doi.org/10.1039/c39860001758.
  11. Marchand A. Electronic properties of doped carbons. In: Walker PL, ed. Chemistry and Physics of Carbon, Marcel Dekker, New York, 155 (1971).
  12. Endo M, Hayashi T, Hong SH, Enoki T, Dresselhaus MS. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. J Appl Phys, 90, 5670 (2001). https://doi.org/10.1063/1.1409581.
  13. Hach CT, Jones LE, Crossland C, Thrower PA. An investigation of vapor deposited boron rich carbon-a novel graphite-like material-part I: the structure of BCx (C6B) thin films. Carbon, 37, 221 (1999). https://doi.org/10.1016/s0008-6223(98)00166-3.
  14. Matthews MJ, Dresselhaus MS, Dresselhaus G, Endo M, Nishimura Y, Hiraoka T, Tamaki N. Magnetic alignment of mesophase pitch-based carbon fibers. Appl Phys Lett, 69, 430 (1996). https://doi.org/10.1063/1.118084.
  15. Rodriguez NM, Chambers A, Baker RTK. Catalytic engineering of carbon nanostructures. Langmuir, 11, 3862 (1995). https://doi.org/10.1021/la00010a042.
  16. Terrones H, Hayashi T, Munoz-Navia M, Terrones M, Kim YA, Grobert N, Kamalakaran R, Dorantes-Dávila J, Escudero R, Dresselhaus MS, Endo M. Graphitic cones in palladium catalysed carbon nanofibres. Chem Phys Lett, 343, 241 (2001). https://doi.org/10.1016/s0009-2614(01)00718-7.
  17. Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett, 80, 1267 (2002). https://doi.org/10.1063/1.1450264.
  18. Campos-Delgado J, Romo-Herrera JM, Jia X, Cullen DA, Muramatsu H, Kim YA, Hayashi T, Ren Z, Smith DJ, Okuno Y, Ohaba T, Kanoh H, Kaneko K, Endo M, Terrones H, Dresselhaus MS, Terrones M. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett, 8, 2773 (2008). https://doi.org/10.1021/nl801316d.
  19. Besenhard JO, Winter M, Yang J, Biberacher W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J Power Sources, 54, 228 (1995). https://doi.org/10.1016/0378-7753(94)02073-c.
  20. Béguin F, Chevallier F, Vix-Guterl C, Saadallah S, Bertagna V, Rouzaud JN, Frackowiak E. Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon, 43, 2160 (2005). https://doi.org/10.1016/j.carbon.2005.03.041.
  21. Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM, Son H B, Hsieh YP, Reina A, Kong J, Ter-rones M, Dresselhaus MS. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science, 323, 1701 (2009). https://doi.org/10.1126/science.1166862.
  22. Rotkin SV, Gogotsi Y. Analysis of non-planar graphitic structures: from arched edge planes of graphite crystals to nanotubes. Mater Res Innovations, 5, 191 (2000). https://doi.org/10.1007/s10019-001-0152-4.
  23. Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS. Microstructural changes induced in "stacked cup" carbon nanofibers by heat treatment. Carbon, 41, 1941 (2003). https://doi.org/10.1016/s0008-6223(03)00171-4.
  24. Munoz-Navia M, Dorantes-Davila J, Terrones M, Hayashi T, Kim YA, Endo M, Dresselhaus MS, Terrones H. Synthesis and electronic properties of coalesced graphitic nanocones. Chem Phys Lett, 407, 327 (2005). https://doi.org/10.1016/j.cplett.2005.03.095.
  25. Campos-Delgado J, Kim YA, Hayashi T, Morelos-Gomez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull RD, Dresselhaus MS, Terrones M. Thermal stability studies of CVDgrown graphene nanoribbons: defect annealing and loop formation. Chem Phys Lett, 469, 177 (2009). https://doi.org/10.1016/j.cplett.2008.12.082.
  26. Jia X, Campos-Delgado J, Gracia-Espino EE, Hofmann M, Muramatsu H, Kim YA, Hayashi T, Endo M, Kong J, Terrones M, Dresselhaus MS. Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom, 27, 1996 (2009). https://doi.org/10.1116/1.3148829.
  27. Fujisawa K, Hasegawa T, Shimamoto D, Muramatsu H, Jung YC, Hayashi T, Kim YA, Endo M. Boron atoms as Loop accelerator and surface stabilizer in platelet-type carbon nanofibers. ChemPhysChem, 11, 2345 (2010). https://doi.org/10.1002/cphc.201000298.
  28. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401 (2006). https://doi.org/10.1103/physrevlett.97.187401.
  29. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett, 10, 751 (2010). https://doi.org/10.1021/nl904286r.
  30. Saito R, Grüneis A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jorio A, Cançado LG, Fantini C, Pimenta MA, Souza Filho AG. Double resonance Raman spectroscopy of singlewall carbon nanotubes. New J Phys, 5, 157 (2003). https://doi.org/10.1088/1367-2630/5/1/157.
  31. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R. Studying Disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys, 9, 1276 (2007). https://doi.org/10.1039/b613962k.
  32. Lucchese MM, Stavale F, Martins Ferreira EH, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48, 1592 (2010). https://doi.org/10.1016/j.carbon.2009.12.057.
  33. Cancado LG, Jorio A, Martins Ferreira EH, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala T, Ferrari AC. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett, 11, 3190 (2011). https://doi.org/10.1021/nl201432g.
  34. Tang YB, Yin LC, Yang Y, Bo XH, Cao YL, Wang HE, Zhang WJ, Bello I, Lee ST, Cheng HM, Lee CS. Tunable band gaps and ptype transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano, 6, 1970 (2012). https://doi.org/10.1021/nn3005262.
  35. Fujisawa K, Hayashi T, Endo M, Terrones M, Kim JH, Kim YA. Effect of boron doping on the electrical conductivity of metallicityseparated single walled carbon nanotubes. Nanoscale, 10, 12723 (2018). https://doi.org/10.1039/c8nr02323a.
  36. Mott NF. Conduction in Non-crystalline Materials, Oxford University Press, Oxford (1987).
  37. Shklovskii BI, Efros AL. Electronic Properties of Doped Semiconductors, Springer-Verlag, Berlin (1984).
  38. Vavro J, Kikkawa JM, Fischer JE. Metal-insulator transition in doped single-wall carbon nanotubes. Phys Rev B, 71, 155410 (2005). https://doi.org/10.1103/physrevb.71.155410.
  39. Menon R, Yoon CO, Moses D, Heeger AJ, Cao Y. Transport in polyaniline near the critical regime of the metal-insulator transition. Phys Rev B, 48, 17685 (1993). https://doi.org/10.1103/physrevb.48.17685.
  40. Kumari L, Prasad V, Subramanyam SV. Effect of iodine incorporation on the electrical properties of amorphous conducting carbon films. Carbon, 41, 1841 (2003). https://doi.org/10.1016/s0008-6223(03)00172-6.
  41. Kumari L, Subramanyam SV, Eto S, Takai K, Enoki T. Metal-insulator transition in iodinated amorphous conducting carbon films. Carbon, 42, 2133 (2004). https://doi.org/10.1016/j.carbon.2004.04.019.
  42. Fung AWP, Dresselhaus MS, Endo M. Transport properties near the metal-insulator transition in heat-treated activatedrotect carbon fibers. Phys Rev B, 48, 14953 (1993). https://doi.org/10.1103/physrevb.48.14953.
  43. Vora PM, Gopu P, Rosario-Canales M, Perez CR, Gogotsi Y, Santiago-Aviles JJ, Kikkawa JM. Correlating magnetotransport and diamagnetism ofsp2-bonded carbon networks through the metalinsulator transition. Phys Rev B, 84, 155114 (2011). https://doi.org/10.1103/physrevb.84.155114.
  44. Kim YA, Aoki S, Fujisawa K, Ko YI, Yang KS, Yang CM, Jung YC, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Defectassisted heavily and substitutionally boron-doped thin multiwalled carbon nanotubes using high-temperature thermal diffusion. J Phys Chem C, 118, 4454 (2014). https://doi.org/10.1021/jp410732r.
  45. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K. Recent development of carbon materials for Li ion batteries. Carbon, 38, 183 (2000). https://doi.org/10.1016/s0008-6223(99)00141-4.
  46. Fujisawa K, Cruz-Silva R, Yang KS, Kim YA, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. J Mater Chem A, 2, 9532 (2014). https://doi.org/10.1039/c4ta00936c.
  47. Ma X, Wang Q, Chen LQ, Cermignani W, Schobert HH, Pantano CG. Semi-empirical studies on electronic structures of a boron-doped graphene layer-implications on the oxidation mechanism. Carbon, 35, 1517 (1997). https://doi.org/10.1016/s0008-6223(97)00102-4.
  48. Radovic LR, Karra M, Skokova K, Thrower PA. The role of substitutional boron in carbon oxidation. Carbon, 36, 1841 (1998). https://doi.org/10.1016/s0008-6223(98)00156-0.
  49. Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 323, 760 (2009). https://doi.org/10.1126/science.1168049.
  50. Dai L, Xue Y, Qu L, Choi HJ, Baek JB. Metal-free catalysts for oxygen reduction reaction. Chem Rev, 115, 4823 (2015). https://doi.org/10.1021/cr5003563.
  51. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351, 361 (2016). https://doi.org/10.1126/science.aad0832.
  52. Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem, 22, 390 (2012). https://doi.org/10.1039/c1jm14694g.
  53. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, siroma Z, Uchimoto Y, Yasuda K, Kimijima K-I, Iwashita N. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev, 107, 3904 (2007). https://doi.org/10.1021/cr050182l.
  54. Kinoshita K. Carbon: Electrochemical and Physicochemical Properties, Wiley, New York (1988).
  55. Casalegno A, Marchesi R. DMFC anode polarization: experimental analysis and model validation. J Power Source, 175, 372 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.003.
  56. Acharya CK, Turner CH. Stabilization of platinum clusters by substitutional boron dopants in carbon supports. J Phys Chem B, 110, 17706 (2006). https://doi.org/10.1021/jp063618p.
  57. Acharya CK, Sullivan DI, Turner CH. Characterizing the interaction of Pt and PtRu clusters with boron-doped, nitrogen-doped, and activated carbon: density functional theory calculations and parameterization. J Phys Chem C, 112, 13607 (2008). https://doi.org/10.1021/jp8034488.
  58. Acharya CK, Turner CH. Effect of an electric field on the adsorption of metal clusters on boron-doped carbon surfaces. J Phys Chem C, 111, 14804 (2007). https://doi.org/10.1021/jp073643a.
  59. Weller TE, Ellerby M, Saxena SS, Smith RP, Skipper NT. Superconductivity in the intercalated graphite compounds $C_6Yb$ and $C_6Ca$. Nat Phys, 1, 39 (2005). https://doi.org/10.1038/nphys0010.
  60. Emery N, Herold C, d'Astuto M, Garcia V, Bellin C, Mareche, JF, Lagrange P, Loupias G. Superconductivity of Bulk $CaC_6$. Phys Rev Lett, 95, 087003 (2005). https://doi.org/10.1103/physrevlett.95.087003.
  61. Ekimov EA, Sidorov V A, Bauer ED, Mel'Nik NN, Curro NJ, Thompson JD, Stishov SM. Superconductivity in diamond. Nature, 428, 542 (2004). https://doi.org/10.1038/nature02449.
  62. Murata N, Haruyama J, Reppert J, Rao AM, Koretsune T, Saito S, Matsudaira M, Yagi Y. Superconductivity in thin films of boron-doped carbon nanotubes. Phys Rev Lett, 101, 027002 (2008). https://doi.org/10.1103/physrevlett.101.027002.
  63. Haruyama J, Matsudaira M, Reppert J, Rao A, Koretsune T, Saito S, Sano H, Iye Y. Superconductivity in boron-doped carbon nanotubes. J Supercond Novel Magn, 24, 111 (2011). https://doi.org/10.1007/s10948-010-0906-6.
  64. Nakamura J, Matsudaira M, Haruyama J, Sugiura H, Tachibana M, Reppert J, Rao A, Nishio T, Hasegawa Y, Sano H, Iye Y. Pressure-induced superconductivity in boron-doped buckypapers. Appl Phys Lett, 95, 142503 (2009). https://doi.org/10.1063/1.3242016.
  65. Hennig G. Diffusion of boron in graphite. J Chem Phys, 42, 1167 (1965). https://doi.org/10.1063/1.1696098.