• Title/Summary/Keyword: Joint Matrix

Search Result 369, Processing Time 0.022 seconds

An Efficient Computation Method for Kinematic Control of Redundant Manipulators (여유 자유도를 갖는 미니퓰레이터의 기구학적 제어를 위한 효율적 계산 방법)

  • 이경수;서일홍;임준홍
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.379-385
    • /
    • 1988
  • A kinematic control for redundant manipulators is consisdered. An efficient computation method is proposed to determine the joint variable solutions for a given Cartesian path of the end effector. In the proposed method, the Jacobian matrix and its pseudoinverse matrix are calculated intermittently only when the errors exceed the prescribed tolerance. Thereby, the computational burdens are greatly reduced, and at the same time, the errors are maintained within a tolerable range. To show the effectiveness of the mehtod, the result of the simulation is provided in which the redundancy of the manipulator is resolved to avoid the singularity.

  • PDF

Image retrieval using block color characteristics and spatial pattern correlation (블록 컬러 특징과 패턴의 공간적 상관성을 이용한 영상 검색)

  • Chae, Seok-Min;Kim, Tae-Su;Kim, Seung-Jin;Lee, Kun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a new content-based image retrieval using a block color co-occurrence matrix (BCCM) and pattern correlogram. In the proposed method, the color feature vectors are extracted by using BCCM that represents the probability of the co-occurrence of two mean colors within blocks. Also the pattern feature vectors are extracted by using pattern correlogram which is combined with spatial correlation of pattern. In the proposed pattern correlogram method. after block-divided image is classified into 48 patterns with respect to the change of the RGB color of the image, joint probability between the same pattern from the surrounding blocks existing at the fixed distance and the center pattern is calculated. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

  • PDF

Dynamic Analysis Of Structures With Nonlinear Joints By Using Substructure Synthesis Method (부분구조 합성법을 이용한 비선형 결합부 구조물의 동적 해석)

  • 이신영;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.324-330
    • /
    • 1990
  • In this study, in order to perform dynamic design of machine tools reasonably and effectively, a method was formulated to be applicable to the damped structures connected by joints having elasticity and damping by using substructure synthesis method. And a nonlinear solution method was proposed and it formulates the nonlinear parts by describing functions and uses the reducing transformation matrix by the substructure synthesis method. The results of frequency response analysis of a machine tool, where an NC lathe was partitioned by three parts of spindle, housing and bed-base part and the nonlinearity of bearing parts between spindle and housing was modelled, showed force dependency of the response.

On Development of Vibration Analysis Algorithm of Beam with Multi - Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 (II))

  • 문덕홍;최명수;홍숭수;강현석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.256-266
    • /
    • 1997
  • The authors apply the transfer influence coefficient method to the 3. dimensional vibration analysis of beam with multi - joints and formulate a general algorithm to analyse the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure which is mainly found in the robot arms, cranes and so on, has some crooked parts, subsystems and joints, but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at node which the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

Kinematic Control of Double Pantograph Type Manipulator Using Neural Network (신경회로망을 이용한 더블 팬터그래프형 매니퓰레이터의 기구학적 제어)

  • 김성철;정원지;신중호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.20-24
    • /
    • 1997
  • In general, pantograph type manipulators are used for carrying heavy payloads with positional accuracy. In this paper, a double pantograph type manipulator, activated by two slider joints, is studied for applying to file handing machine in atomic power plant. In order to realize the stable horizontal movement of a heavy fuel rod whit good positional accuracy, methods for allocating slider and finding constant joint rates are proposed. In addition, the static deflection of the proposed mechanism was studied using transfer-stiffness matrix method. A neural network control algorithm which compensates static deflections is explored with computer simulations.

  • PDF

Dynamic Walking Planning and Inverse Dynamic Analysis of Biped Robot (이족로봇의 동적 보행계획과 역동역학 해석)

  • Park, In-Gyu;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.133-144
    • /
    • 2000
  • The dynamic walking planning and the inverse dynamics of the biped robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian corrdinates then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot the holonomic constraints are added or deleted on the equations of motion. the number of these constraints can be changed by types of walking patterns with three modes. In order for the dynamic walking to be stabilizable optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

Dynamic Walking and Inverse Dynamic Analysis of Biped Walking Robot (이족보행로봇의 동적보행과 역동역학 해석)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.548-555
    • /
    • 2000
  • The dynamic walking and the inverse dynamics of the biped walking robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian coordinates, then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot, the holonomic constraints are added or deleted on the equations of motion. The number of these constraints can be changed by types of walking pattern with three modes. In order for the dynamic walking to be stabilizable, optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

Analysis of a Queueing Model with Time Phased Arrivals

  • Kim, Che-Soong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.107-118
    • /
    • 2007
  • A single-server queueing model with infinite buffer and batch arrival of customers is considered. In contrast to the standard batch arrival when a whole batch arrives into the system at one epoch, we assume that the customers of an accepted batch arrive one-by one in exponentially distributed times. Service time is exponentially distributed. Flow of batches is the stationary Poisson arrival process. Batch size distribution is geometric. The number of batches, which can be admitted into the system simultaneously, is subject of control. Analysis of the joint distribution of the number batches and customers in the system and sojourn time distribution is implemented by means of the matrix technique and method of catastrophes. Effect of control on the main performance measures of the system is demonstrated numerically.

  • PDF

Topological Modeling Approach of Multibody System Dynamics for Lifting Simulation of Floating Crane (다물체계 동역학의 위상 관계 모델링 기법을 적용한 해상 크레인의 리프팅 시뮬레이션)

  • Ham, Seung-Ho;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.261-270
    • /
    • 2009
  • We can save a lot of efforts and time to perform various kinds of multibody system dynamics simulations if the equations of motion of the multibody system can be formulated automatically. In general, the equations of motion are formulated based on Newton's $2^{nd}$law. And they can be transformed into the equations composed of independent variables by using velocity transformation matrix. In this paper the velocity transformation matrix is derived based on a topological modeling approach which considers the topology and the joint property of the multibody system. This approach is, then, used to formulate the equations of motion automatically and to implement a multibody system dynamics simulation program. To verify the the efficiency and convenience of the program, it is applied to the lifting simulation of a floating crane.

Analysis of Training Method for Matrix Weighted Intra Prediction (MIP) in VVC (VVC 행렬가중 화면내 예측(MIP) 학습기법 분석)

  • Park, Dohyeon;Kwon, Hyoungjin;Jeong, Seyoon;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.148-150
    • /
    • 2020
  • 최근 VVC(Versatile Video Coding) 표준 완료 이후 JVET(Joint Video Experts Team)은 인공신경망 기반의 비디오 부호화를 위한 AhG(Ad-hoc Group) 구성하고 인공지능을 이용한 비디오 압축 기술들을 검증하고 있으며, MPEG(Moving Picture Experts Group)에서는 DNNVC(Deep Neural Network based Video Coding) 활동을 통해 딥러닝 기반의 차세대 비디오 부호화 표준 기술을 탐색하고 있다. 본 논문은 VVC 에 채택된 신경망 기반의 기술인 MIP(Matrix Weighted Intra Prediction)를 참조하여, MIP 모델의 학습에서 손실함수가 예측 성능에 미치는 영향을 분석한다. 즉, 예측의 왜곡(MSE)만을 고려한 경우와 예측오차의 부호화 비용도 함께 반영한 손실함수를 비교한다. 실험을 위해 HEVC(High Efficiency Video Coding) 화면내 예측 대비 평균적인 PSNR 향상 정도를 나타내는 성능 지표(��PSNR)를 정의한다. 실험결과 예측오차의 부호화 특성을 반영하는 손실함수를 이용한 학습이 MSE 만 고려한 학습 대비 ��PSNR 기준 평균 0.4dB 향상됨을 보였다.

  • PDF