• Title/Summary/Keyword: Joint Detection

Search Result 411, Processing Time 0.025 seconds

Vision and Depth Information based Real-time Hand Interface Method Using Finger Joint Estimation (손가락 마디 추정을 이용한 비전 및 깊이 정보 기반 손 인터페이스 방법)

  • Park, Kiseo;Lee, Daeho;Park, Youngtae
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.157-163
    • /
    • 2013
  • In this paper, we propose a vision and depth information based real-time hand gesture interface method using finger joint estimation. For this, the areas of left and right hands are segmented after mapping of the visual image and depth information image, and labeling and boundary noise removal is performed. Then, the centroid point and rotation angle of each hand area are calculated. Afterwards, a circle is expanded at following pattern from a centroid point of the hand to detect joint points and end points of the finger by obtaining the midway points of the hand boundary crossing and the hand model is recognized. Experimental results that our method enabled fingertip distinction and recognized various hand gestures fast and accurately. As a result of the experiment on various hand poses with the hidden fingers using both hands, the accuracy showed over 90% and the performance indicated over 25 fps. The proposed method can be used as a without contacts input interface in HCI control, education, and game applications.

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong;Huo, Linsheng;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

Multiple-Phase Energy Detection and Effective Capacity Based Resource Allocation Against Primary User Emulation Attacks in Cognitive Radio Networks

  • Liu, Zongyi;Zhang, Guomei;Meng, Wei;Ma, Xiaohui;Li, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1313-1336
    • /
    • 2020
  • Cognitive radio (CR) is regarded as an effective approach to avoid the inefficient use of spectrum. However, CRNs have more special security problems compared with the traditional wireless communication systems due to its open and dynamic characteristics. Primary user emulation attack (PUEA) is a common method which can hinder secondary users (SUs) from accessing the spectrum by transmitting signals who has the similar characteristics of the primary users' (PUs) signals, and then the SUs' quality of service (QoS) cannot be guaranteed. To handle this issue, we first design a multiple-phase energy detection scheme based on the cooperation of multiple SUs to detect the PUEA more precisely. Second, a joint SUs scheduling and power allocation scheme is proposed to maximize the weighted effective capacity of multiple SUs with a constraint of the average interference to the PU. The simulation results show that the proposed method can effectively improve the effective capacity of the secondary users compared with the traditional overlay scheme which cannot be aware of the existence of PUEA. Also the good delay QoS guarantee for the secondary users is provided.

Detection of Defects in Composite Structures by using ESPI (ESPI를 이용한 복합재료 구조물의 결함 검출)

  • Kim, Kyung-Suk;Cheong, Seong-Kyun;Kang, Jin-Shik;Chang, Ho-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.299-306
    • /
    • 2001
  • In this paper, artificial and real defects(delamination and debond) in composite structures were detected by using ESPI system. Three types of specimens, that is, composite laminates, honeycomb structures, and adhesive joints, were used to study the applicability of ESPI to composite structures. To detect defects in specimens, we selected thermal loading method that can easily induce the surface deformation of specimen. Experimental results show that defects in composite structures could be easily detected by ESPI. Moreover, it shows that ESPI could be usefully applied to the detection of defects in various composite structures.

  • PDF

HDRE: Coverage Hole Detection with Residual Energy in Wireless Sensor Networks

  • Zhang, Yunzhou;Zhang, Xiaohua;Fu, Wenyan;Wang, Zeyu;Liu, Honglei
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.493-501
    • /
    • 2014
  • Coverage completeness is an important indicator for quality of service in wireless sensor networks (WSN). Due to limited energy and diverse working conditions, the sensor nodes have different lifetimes which often cause network holes. Most of the existing methods expose large limitation and one-sidedness because they generally consider only one aspect, either coverage rate or energy issue. This paper presents a novel method for coverage hole detection with residual energy in randomly deployed wireless sensor networks. By calculating the life expectancy of working nodes through residual energy, we make a trade-off between network repair cost and energy waste. The working nodes with short lifetime are screened out according to a proper ratio. After that, the locations of coverage holes can be determined by calculating the joint coverage probability and the evaluation criteria. Simulation result shows that compared to those traditional algorithms without consideration of energy problem, our method can effectively maintain the coverage quality of repaired WSN while enhancing the life span of WSN at the same time.

CRF Based Intrusion Detection System using Genetic Search Feature Selection for NSSA

  • Azhagiri M;Rajesh A;Rajesh P;Gowtham Sethupathi M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.131-140
    • /
    • 2023
  • Network security situational awareness systems helps in better managing the security concerns of a network, by monitoring for any anomalies in the network connections and recommending remedial actions upon detecting an attack. An Intrusion Detection System helps in identifying the security concerns of a network, by monitoring for any anomalies in the network connections. We have proposed a CRF based IDS system using genetic search feature selection algorithm for network security situational awareness to detect any anomalies in the network. The conditional random fields being discriminative models are capable of directly modeling the conditional probabilities rather than joint probabilities there by achieving better classification accuracy. The genetic search feature selection algorithm is capable of identifying the optimal subset among the features based on the best population of features associated with the target class. The proposed system, when trained and tested on the bench mark NSL-KDD dataset exhibited higher accuracy in identifying an attack and also classifying the attack category.

THE APPEARENCE OF PROINFLAMMATORY CYTOKINES IN TEMPOROMANDIBULAR JOINT DISORDERS AFTER ARTHROCENTESIS AND LAVAGE (측두하악장애환자에서 악관절 세척술후 관절활액의 전구염증성 Cytokines의 발현)

  • Kim, Cheol-Hun;Hwang, Hie-Sung;Shin, Sang-Hoon;Chung, In-Kyo;Hwang, Tae-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.370-378
    • /
    • 2005
  • The purpose of this study is that evaluate the distribution and biological roles of TNF-a, interleukin-1${\beta}$(IL-1${\beta}$), interleukin-6(IL-6) and tissue inhibitors of metalloproteinase-1(TIMP-1) in the synovial fliud of patients with non-inflammatory chronic temporomandibular joint(TMJ) disorders in relation to pain during joint movements and magnetic resonance imaging(MRI) findings. TMJ synovial fluids aspirates were obtained from 36 patients (36 joints) with chronic TMJ disorders and from 8 controls(8 joints). Patients were divided to four groups. The control group was from healthy volunteers(8 joints), group I(18 joints) was patients with anterior disc displacement with reduction, group II(5 joints) was patients with disc displacement without reduction and group III (5 joints) was osteoarthritis. The TNF-${\alpha}$, IL-1${\beta}$ and IL-6 levels in the aspirates were determined by using an enzyme-linked immunosorbent assay and the TIMP-1 level was measured by an enzyme immunoassay. Following examinations for pain during joint movements and MRI observations, these cytokines' level and frequencies of detection were compared. The level of IL-1${\beta}$was not significant different in all groups. but the level of TNF-${\alpha}$, IL-6 and TIMP-1 were significant different among groups. The level of IL-6 and TIMP-1 were correlated to pain during movement(p<0.01) and the level of TNF-a(p<0.05). Also, the level of IL-6 was correlated to the level of TIMP-1(p<0.01). Especially, The level of the TIMP-1 level was significantly correlated to the pain during movement and showed very high levle of Pearson's correlation coefficient (r=0.833)(p<0.001). The results indicated that the TNF-${\alpha}$, IL-6 and TIMP-1 levels in the TMJ aspirates of patients with chronic TMJ disorders have been raised. Especially, IL-6 and TIMP-1 were very high levels in the patients who were degraded in the TMJ. Also, TNF-${\alpha}$, IL-6 and TIMP-1 showed the significant correlation in the chronic temporomandibular joint disorders. Therefore I suggest that these cytokines were also correlated to the pain during movement in the chronic temporomandibular joint disorders.

Clinical Utility of Haptoglobin in Combination with CEA, NSE and CYFRA21-1 for Diagnosis of Lung Cancer

  • Wang, Bing;He, Yu-Jie;Tian, Ying-Xing;Yang, Rui-Ning;Zhu, Yue-Rong;Qiu, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9611-9614
    • /
    • 2014
  • Purpose: To investigate the clinical value in lung cancer of a combination of four serum tumor markers, haptoglobin (Hp), carcinoembryonic antigen (CEA), neuron specific enolase (NSE) as well as the cytokeratin 19 fragment (CYFRA21-1). Materials and Methods: Serum Hp (with immune-turbidimetric method), CEA, NSE, CYFRA21-1 (with chemiluminescence method) level were assessed in 193 patients with lung cancer, 87 patients with benign lung disease and 150 healthy controls. Differences of expression were compared among groups, and joint effects of these tumor markers for the diagnosis of lung cancer were analyzed. Results: Serum tumor marker levels in patients with lung cancer were obviously higher than those with benign lung disease and normal controls (p<0.01). The sensitivities of Hp, CEA, NSE and CYFRA21-1 were 43.5%, 40.9%, 23.3% and 41.5%, with specificities of 90.7%, 99.2%, 97.9% and 97.9%. Four tumor markers combined together could produce a positive detection rate of 85.0%, significantly higher than that of any single test. With squamous carcinomas, the positive detection rates with Hp and CYFRA21-1 were higher than that of other markers. In the adenocarcinoma case, the positive detection rate of CEA was higher than that of other markers. For small cell carcinomas, the positive detection rate of NSE was highest. The area under receiver operating characteristic curve ($AUC^{ROC}$) of Hp in squamous carcinoma (0.805) was higher than in adenocarcinoma (0.664) and small cell carcinoma (0.665). Conclusions: Hp can be used as a new serum tumor marker for lung cancer. Combination detection of Hp, CEA, NSE and CYFRA21-1 could significantly improve the sensitivity and specificity in diagnosis of lung cancer, and could be useful for pathological typing.

Performance Analysis of Frame Synchronization and Structure Detection Utilizing Multiple Frames of the DVB-S2 Satellite Broadcasting System (다수개 프레임을 활용한 DVB-S2 위성방송 시스템의 프레임 동기 및 구조 검출 성능 분석)

  • Kim, Sang-Tae;Kang, Seok-Heon;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.139-147
    • /
    • 2008
  • DVB-S2 (Digital Video Broadcasting-Satellite, Version 2) system transmits frames which adapt their structures based on the channel conditions, thus requiring simultaneous detection of the start of the Same (SoF) and the frame structure at the initial acquisition stage of the receiver. Also, a very low value of the minimum operating signal-to-noise ratio (SNR) for the acquisition necessitates a method utilizing multiple received frames to meet the required performance. In this paper, performance of joint time synchronization and frame structure detection methods using multiple DVB-S2 frames is evaluated by deriving the detection error probability. In particular, we evaluate the performance and complexity variations when the soft- and hard-decision values of the signal correlation output are used, present the synchronization parameters to optimize the performance, and verify the analysis results via computer simulations.

Fault Detection through the LASAR Component modeling of PLD Devices (PLD 소자의 LASAR 부품 모델링을 통한 고장 검출)

  • Pyo, Dae-in;Hong, Seung-beom
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.314-321
    • /
    • 2020
  • Logic automated stimulus and response (LASAR) software is an automatic test program development tool for logic function test and fault detection of avionics components digital circuit cards. LASAR software needs to the information for the logic circuit function and input and output of the device. If there is no component information, normal component modeling is impossible. In this paper, component modeling is carried out through reverse design of programmable logic device (PLD) device without element information. The developed LASAR program identified failure detection rates through fault simulation results and single-seated fault insertion methods. Fault detection rates have risen by 3% to 91% for existing limited modeling and 94% for modeling through the reverse design. Also, the 22 case of stuck fault with the I/O pin of EP310 PLD were detected 100% to confirm the good performance.