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Abstract 
 

Cognitive radio (CR) is regarded as an effective approach to avoid the inefficient use of 
spectrum. However, CRNs have more special security problems compared with the traditional 
wireless communication systems due to its open and dynamic characteristics.  Primary user 
emulation attack (PUEA) is a common method which can hinder secondary users (SUs) from 
accessing the spectrum by transmitting signals who has the similar characteristics of the 
primary users’ (PUs) signals, and then the SUs’ quality of service (QoS) cannot be guaranteed. 
To handle this issue, we first design a multiple-phase energy detection scheme based on the 
cooperation of multiple SUs to detect the PUEA more precisely. Second, a joint SUs 
scheduling and power allocation scheme is proposed to maximize the weighted effective 
capacity of multiple SUs with a constraint of the average interference to the PU. The 
simulation results show that the proposed method can effectively improve the effective 
capacity of the secondary users compared with the traditional overlay scheme which cannot be 
aware of the existence of PUEA. Also the good delay QoS guarantee for the secondary users is 
provided. 
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1. Introduction 

With the rapid development of wireless communication technology, mobile devices and 
services become more diverse and the bandwidth demand for wireless networks increases 
dramatically. The traditional spectrum allocation policy assigns spectrum to the specific 
authorized users fixedly. The spectrum efficiency of such a static allocation is very low [1]. 
The survey data of Federal Communication Commission (FCC) show that many authorized 
bands are underutilized [2]. Cognitive radio is considered to be an efficient solution to 
overcome the problem of spectrum inefficiency and scarcity by the dynamic and flexible 
spectrum access. Actually, CR technology has been deemed as a promising approach to 
address the challenges and requirements on massive capacity of the fifth generation (5G) 
mobile networks [3], [4]. Spectrum sharing by dynamic spectrum access is the core idea of CR. 
In order to meet the much higher spectrum requirements of 5G, full spectrum sharing 
throughout all kinds of spectrum resources is expected, such as low and high frequency bands, 
licensed and unlicensed frequency bands, and continuous and discontinuous frequency bands 
[4]. Spectrum sensing and spectrum allocation are two key steps of spectrum sharing in 
cognitive radio networks (CRNs). The main purpose of spectrum sensing is to find the white 
spaces so that SUs can obtain more opportunities to access the authorized spectrum without 
causing harmful interference to PUs. Spectrum allocation aims to achieve the efficient 
utilization of licensed spectrum to guarantee the QoS requirements for SUs by distributing the 
spectrum white spaces to SUs optimally. 

However, the openness of the wireless communication system makes the CRNs face more 
specific security issues. PUEA is a common problem. According to the attacking purpose, 
PUEA could be classified into two categories: a selfish SU and a malicious PUE attacker. A 
selfish SU would emulate the PU’s signal to access a primary channel as the PU does not use it, 
or broadcast fake information on the available channel in order to empty or pre-occupy a 
channel for its own transmission. A malicious PUE attacker would induce the denial of service 
(DoS) to the CRNs by sending the faked PU signal and then decrease the spectrum access 
opportunity of SUs. The existence of attack signal makes SUs unable to determine whether 
PUs or MUs occupy channel when channel is busy based on the traditional spectrum sensing 
methods. Meanwhile, the existing resource allocation schemes will not be suitable for such 
PUEA scenario either. The power allocation for SUs is also difficult to implement.  

The correct detection of PUEA is of great significance for causing the low interference to 
PUs and maximizing the utilization of spectrum resource. Some works have studied the 
detection of PUEA. They can be generally divided into two categories namely location-aware 
methods [5],[6] and location-unaware methods [7]-[12]. Location-aware methods first locate 
the signal transmitter based on the measurements of received signal strength (RSS)[5] or time 
difference of arrival (TDOA)[6]. Then, the estimated location of the signal source is compared 
with the known position of the PU transmitter to determine whether the signal source is a PU 
or PUEA. However, location based detection schemes need a prior knowledge of the PUs’ 
locations. The location-unaware methods try to identify a PU and a PUEA mainly by using the 
signals’ some characteristics, such as the energy and the cyclic stationarity of signals. 
Moreover, cooperative spectrum sensing (CSS) technology based on the decisions or 
measured data fusion of multiple-SUs has been widely used in CRNs to obtain a high detection 
accuracy in deep fading environment. CSS could be also introduced to improve the PUEA 
detection performance. In [7], a two-phase PUEA detection algorithm based on multiple SUs 
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cooperation was proposed toward a CRN with PUs communicating with OFDM signal. In the 
first phase, the cyclic stationary feature of non-zero autocorrelation property of OFDM signals 
is utilized to distinguish PUs from PUEAs which do not use OFDM signals. Then the energy 
based detection is executed in the second phase to further distinguish PUE attacks from the 
noise, if the first-phase detection reveals that the primary user is absent. However, this method 
would become invalid when the PUEA can emulate PUs to transmit OFDM signals. In fact, 
such a scenario would appear very likely for a selfish SU attack or a smart PUE attack. 
Moreover, hard decision fusion (HDF) detection schemes combining the binary decision of 
each SU with K-out-N rule at fusion center (FC) were studied to collaboratively detect PU and 
PUEA in [8],[9]. Concretely, the main parameters involved in cooperative spectrum sensing, 
such as the number of samples, the detection thresholds for the SU’s local decision and the 
parameter K in voting rule, were optimized to minimize the sensing error probability in the 
works of [8] and [9]. To retain more information of the local observations at each SU, soft 
decision fusion (SDF) schemes were studied also to realize the accurate PU detection in the 
presence of PUEA in [10], [11]. The local measured statistic of each SU rather than the binary 
decision result is sent to FC and a global decision is made by FU based on the original 
measurements of multiple SUs. The authors of [10] adopted a weighted combination of energy 
statistics from SUs at FC to make the global decision. Further, the weights were optimized to 
maximize the SU’s throughput. While, the work in [11] applied minimum Bayes cost criteria 
to determine the channel status in four cases. In addition, a selfish SU attack was discussed in 
[12]. In order to find the selfish SU who broadcasts faked available channel lists to its 
neighboring SUs for pre-occupying the channel, an attack detection method based on 
information exchanging and comparing among neighboring CR nodes was presented. 
However, the attack type in [12] is different from our work in this paper. We focus on the 
malicious PUE attack, where an attacker sends the faked PU signal rather than the false vacant 
channel lists to prevent legitimate SUs from accessing the available channel. 

The purpose of accurate detection is to improve QoS of SUs as well as avoid any deleterious 
interference to the PU. Specifically, the real-time performance is one of important evaluation 
indexes of communication quality. Compared with conventional wireless networks, delay 
QoS guarantee is a more challenging issue for CRNs. Effective capacity [13] has been 
introduced as a powerful tool to describe the ability that a system provides real-time services. 
Thus, enhancing the effective capacity is a feasible way to ensure the delay QoS of SUs. 
Furthermore, different users may have different delay requirements. For example, the voice 
traffic may have stricter delay QoS constraint than the data traffic. Hence, it is meaningful to 
study on the discrepant delay QoS provision for different SUs. There exist some works 
considering the resource allocation for the PUEA scenarios. The authors of [14] proposed a 
power allocation to maximize the transmission rate of SUs for an OFDM CRNs with PUEA. 
Here, the secondary users only transmit signals when the primary channel is sensed to be idle. 
In order to improve the spectrum utilization, the scheme in [15] allowed the SUs to access the 
spectrum when it is idle or occupied by MUs. It also took the maximization of the SU’s rate as 
the design object. Furthermore, the works in [16], [17] investigated the energy efficiency (EE) 
maximization problem by SU selection, power allocation and sensing time assignment in the 
presence of PUEA.  However, the above works did not consider the delay QoS requirement of 
the SU’s practical traffic. While, such a requirement is more difficult to be satisfied when the 
malicious attacker exists.  

In order to provide better delay QoS for different secondary users, we first propose a 
multiple-phase energy detection scheme to detect the PUEA more accurately through fusing 
the energy statistics of multiple secondary users. Further, the weights in the fused statistic are 
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determined and the decision thresholds are obtained based on the analyzed detection 
probabilities for three decision cases. Second, a joint SUs scheduling and power allocation 
scheme is proposed to maximize the weighted effective capacity of the SUs. Here, the 
secondary users will access the spectrum when it is sensed to be idle or occupied by the 
malicious users. Further, an iterative process, which includes an exhaustive search based user 
scheduling and a CVX based power allocation, is adopted to solve the joint optimization 
problem. The simulation results demonstrate that the proposed PUEA detector can recognize 
the primary users and malicious users efficiently. The delay QoS guarantee for SUs can be 
realized better by the proposed joint user scheduling and power allocation scheme.  

The rest of the paper is organized as follows: In section 2, a system model with multiple SUs 
and several MUs is described and the transmission model is given. The multiple-phases energy 
detection scheme based on the cooperation of multiple SUs is presented in section 3. Section 4 
introduces the joint user scheduling and power allocation method based on effective capacity 
in detail. Section 5 presents and analyzes the simulation results. Section 6 concludes the paper. 

2. System Model 
Consider a cognitive radio network shown in Fig. 1, which includes one primary channel, 
M secondary users and several malicious users. Assume the MUs occupy the primary channel 
with a certain probability when the PU is inactive. Multiple SUs can cooperatively sense the 
occupancy state of the primary channel and then access the channel legitimately based on the 
sensing result. The overlay mode is adopted. SUs will not access the channel when it is sensed 
to be occupied by PU in order to reduce interference to the PU as much as possible. 

Assume the licensed spectrum bandwidth is B and the small-scale fading of wireless 
channel follows the independent and identically distributed (i.i.d.) Rayleigh block fading. The 
length of a frame is T seconds. The SUs perform spectrum sensing to detect the status of 
channel during the preceding T0 seconds of a frame. Then, one SU is scheduled to transmit 
signal in the remaining 0T T−  seconds if the decision result is the PU being absent. The other 
main assumptions similar as the ones given in [18] are listed as followings: 

1) The primary transmitter (PT) sends the signal with constant power and the SUs’ positions 
remain unchanged. While, MUs’ power and positions would change randomly. 

2) The received signals from PT and MUs are both assumed to be independent and 
identically distributed (i.i.d.) random variables following cyclo-stationary complex Gaussian 
distribution with zero mean. The variances are 2

Pss  and 2
Mss , respectively, where 

1, 2,...,s M=  is the index of SU. 
3) The noise is the i.i.d. cyclo-stationary complex Gaussian distributed random variables 

with mean zero and the variance 2
Nss . 

There are three actual states for the primary channel. 0H  indicates idleness. 1H  and 2H  
indicate that the channel is occupied by PU and MUs, respectively. Assume that MUs can 
sense the status of the primary channel correctly. MUs will not attack when the channel is used 
by the PU in order to prevent being detected by the conservation strategies of the PU. 
Moreover, MUs cannot occupy the idle channel continuously due to the power restriction. 
Then, the Priori probability of each status ( )iP H  would be larger than 0.   
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Fig. 1. System model of a CRN with PUEA 

3. Multiple-Phase Energy Detection for PUEA 

In the system given above, the spectrum sensing problem could be modeled as a hypothesis 
testing problem with three actual states. Further, ,  and are used to represent the 
three channel states sensed, namely being idle, being used by PU and being attacked by MUs. 
Then, the detection results have nine possible cases and the corresponding probabilities are 
denoted by { }. 

3.1 Multiple Detection Statistics  
Energy detection is a simple method for spectrum sensing in the traditional CRNs with two 
actual states, whose hypothesis testing problem for the s-th SU could be expressed as  

                           (1) 

where we have  

                                   (2) 

Here,  is the primary channel coefficient and  is an additive noise.  is the signal 
sent by the PU’s transmitter. is the number of samples for sensing.  is the decision 
threshold to detect the presence of the signal .The energy statistic  in Eq. (1) follows the 
Chi-square distribution with a degree of freedom of . However, according to the Central 
Limit Theorem (CLT),   can be approximated by a Gaussian distribution with a long enough 
N. Actually, CLT has been usually applied to simplify the analysis and design in the spectrum 
sensing, such as in [9], [11] and [19]. Further, the authors of [9] and [11] considered that CLT 
could be used when N >10. This condition is commonly satisfied in a practical system.  

However, the traditional binary hypothesis testing is unsuitable for the scenario with PUEA. 
As the primary channel is occupied by a MU, the received signal of the s-th SU is 

, where  is the channel coefficient from the MU to the s-th SU 
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and Mx  is the signal sent by the MU. Then, sY may still be larger than the threshold λ  and the 
SU cannot distinguish whether the channel is occupied by PU or MUs. Therefore, combing the 
idea of multiple thresholds based scheme in [20] with the CSS methods in [10] and [11], we 
present a modified energy based PUEA detection method, called multiple-phase energy 
detection based on multiple users’ cooperation. Its main idea is to extract multiple detection 
statistics based on the energy statistics from M SUs to detect the presence of PU and MUs 
more accurately.  

In this scheme, the key parameters of 2
Pss  and 2

Nss  for each SU are assumed to be known 

by fusion center, but there is no information about 2
Mss . The detection statistic used in the i-th 

phase is _
1

M
T

i i i s s
s

V w Y
=

= =∑W Y , where _1 _ 2 _[ , ,..., ]T
i i i i Mw w w=W  and 1 2[ , ,..., ]T

MY Y Y=Y . 

Furthermore, {1,2,..., }i L∈ and we take L M=  in order to make full use of the energy 
statistics provided by all SUs. From observation, we can find that it is more difficult for MUs 
to emulate PU’s signals to make all of L detection statistics built by M SU’s measurements 
similar to the case of PU exiting, except that the location of MU is same as PU. For example, 
consider a simple case of two SUs, which corresponds to a two-phase energy detection. The 
two detection statistics can be simply built as 1 1 2( ) / 2V Y Y= + and 1 1 2( ) / 2V Y Y= − , 
respectively. Under the scenario assumption that PU’s signal has constant power and SUs’ 
positions are fixed, 1V and 2V would be stable around two certain values, denoted by 1ε and 2ε , 
when PU is present. Because the dynamic nature of PUEA’s behaviors, 1Y  and 2Y  would 
change randomly. Then, even though the PUEA could make 1V  near to 1ε , it is still difficult to 
keep 2V  close to 2ε simultaneously. From this point of view, we can think that the given 
multi-phase scheme has stronger robustness to PUEA. 

3.2 Decision Procedure 
The decision procedure of the proposed multiple phase energy detection for PUEA is 
presented in Fig. 2. There are 2 1L +  thresholds for L  detection statistics. The first detection 
statistic 1V  is mainly used to distinguish whether the primary channel is idle or busy. All the 
other iV  are used to distinguish whether the channel is used by PU or by MUs. When 1V  is 
less than the threshold of 0λ , the channel is deemed to be idle. Because the transmitting power 
of PU is constant, all of the detection statistics should keep stable under 1H state. Therefore, 
only when all the iV  locate during the corresponding range of ( 1iλ , 2iλ ), the detection result is 

1D . In other situations, the channel would be deemed to be occupied by MUs based on the 
instability assumption of the MUs’ power and locations. 

3.3 Determination of the Weights and Detection Thresholds 

A. Determination of the weight vector iW  
Since 1V  is mainly used to decide whether the channel is occupied, the average received 

energy of all the SUs are taken as 1V  simply and then we have 1_ =1/ , {1,..., }sw M s M∀ ∈ . 
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Fig. 2. Decision Procedure of Multiple-Phase Energy Detection 
 

In order to obtain the other weight vectors , 2,..,i i L=W , an intuitive and heuristic method 

is given. We set 2 2 2 2 2 2
_1 N1 P2 _ 2 N2 P2 _ N P( )= ( )=...= ( )i i i M M Mw w wσσσσσσ     + + +  and then 

combine it with the constraints of _0 1i sw< < and _1
1M

i ss
w

=
=∑ to obtain 

2 2
N P1,

_ 2 2
N P1 1,

( )

( )

M
k kk k s

i s MM
k kl k k l

w
s s

s s
= ≠

= = ≠

+
=

+

∏
∑ ∏

                                             (3) 

Because it is reasonable to deem that the SU with higher received power from the PU 
transmitter may not contribute more for detecting the MU, we set a smaller _i sw for a SU 

with a larger 2 2
N P( )s ss s+ . 

As for the sign of i sw − , some optimization criterion could be used. For example, 
2

2 1

M M
w i ji j i

D
= = +

= −∑ ∑ W W maximization which is adopted in this paper. In the simulation, a 

greedy search is used to find the signs of _i sw . 

B. Calculating Probability Density Function (PDF) of iV  

The probability density function of the detection statistics iV  under three Prior states could 
be easily obtained as  

2 2 4 2
0 _ N _ N 0 01 1

2 2 2 2 2 2 2
1 _ N P _ N P P P1 1

2 2 2 2 2 2 2
2 _ N M _ N M M M1 1

: ~ N( ,1/ ) N( , )

: ~ N( ( ),1/ ( ) ) N( , )

: ~ N( ( ),1/ ( ) ) N( , )

M M
i i s s i s s i is s

M M
i i s s s i s s s i is s

M M
i i s s s i s s s i is s

H V w N w

H V w N w

H V w N w

s s β δ

s s s s β δ

s s s s β δ

= =

= =

= =

 =

 + + =


+ + =

∑ ∑
∑ ∑
∑ ∑

         (4) 

C. Setting the constraints for the probabilities of correction detection 
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Two constraints for the probabilities of correct detection under the cases of 0H and 1H are 
preset as 0 0( / )P D H a≥  and 1 1( / )P D H b≥ . 

D. Calculating the threshold 0λ for 1V  

One threshold 0λ  is used to distinguish 0H  from the other two states and it can be derived 
by selecting the equality sign in 0 0( / )P D H a≥ . The detail is given by 

( )
0

2
0 0 1 0 0 10 10

1
0 10 10

( / )= ( ) 1 =

(1 )

H
P D H P V Q a

Q a

λ λ β δ

λ δ β−

≤ = − −

⇒ = − +

（ ）
                        (5) 

E. Calculating the rest thresholds 1iλ  and 2iλ  

The rest thresholds 1iλ  and 2iλ , {1,..., }i L∀ ∈ , are obtained by using the constraint 

1 1( / )=P D H b . In order to derive 2L thresholds from only one equalization determinately, we 
deem that iV  is independent with each other approximately, then it can be achieved that 

1 1 1 1
1

( ( 1,...,
L

i
i

P D H P D H V b i L
=

=∏）= , ）= ，                             (6) 

Furthermore, we simply set 
  1 1 1 1( = ( , {1,..., }i jP D H V P D H V i j L∀ ∈, ） , ）                           (7) 

Thus, we have  

( ) ( )
1

2 2
1 2 1 2 P( )= = bL

i i i i iP iP i i iPH
P V Q Qλ λ λ b δ λ b δ≤ ≤ − − −（ ） （ ）       (8) 

Further, let 1iλ  and 2iλ  be symmetrical about Piβ  and it can be easily obtained 

( )
( )

1
1 P P

1
2 P P

1 2

(1 ) 2

L
i i i

L
i i i

Q b

Q b

λ b δ

λ b δ

−

−

 = − −


= + −

（ ）
， 1,2,...,Li =                      (9) 

It is worth noting that there is a special case for setting 0λ and 11λ . From Eq.(5) and Eq.(9), 

we can see that 11λ  may be smaller than 0λ when 2
Pkσ  is small. For such a case, we will set 

them identical with the average value of them.  

4. Effective Capacity Based Joint SUs Scheduling and Power Allocation 
under PUEA Scenario 

Consider the case that multiple secondary users will share the primary channel after coordinate 
spectrum sensing. Furthermore, suppose that different SUs have different delay QoS 
requirements because different traffics usually have different delay constraints in practical 
communications. In order to address the resource allocation issue in the above scenario, an 
effective capacity based joint SUs scheduling and power allocation is proposed to guarantee 
the differential delay QoS requirements of multiple SUs who share one idle primary channel. 
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4.1 Effective Capacity of Secondary Users 
Effective capacity can be used to describe the ability to provide real-time services.  It is 
defined as the maximum constant arrival rate that a given service process can support under an 
appointed statistical QoS constraint [21],[22].  Effective capacity can be expressed as  

0( )
0( ) [1 ( )]log E S T T

CE T T e θθ θ − − = − −              (10) 

where θ  is QoS parameter and defined as the exponential decay rate of the buffer overflow 
probability when the buffer threshold increases to infinity[21]. Here, θ can be considered as 
the delay QoS constraint and a higher 𝜃𝜃 means a more strict delay QoS requirement. 
{ }E  indicates calculating the mean value over 0( )S T T−  in the time period 0[ , ]T T . 

0( )S T T−  is the cumulative service process, namely the number of bits sent to the users from 
the buffer during the time period 0[ , ]T T . 

As for the transmission of the secondary user in the considered scenario, the secondary 
transmitter (ST) will send signals to the scheduled SU over the primary channel when it is 
sensed to be idle or occupied by MUs. While the primary channel is sensed to be used by PU, 
ST will keep silent to avoid interfering the PU’s communication. Moreover, the transmission 
power of ST will depend on both the sensing result of the primary channel and the channel 
state information from ST to the scheduled SU. Then, a transmission power factor ( ), iz Dη  is 

introduced in, which satisfies the constraint of ( )DE ,D 1
iz izη ≤  ，

. Here, {0,1,2}i∈ and z is 

the power gain of the scheduled secondary user’s channel. Especially, we have ( )1, 0z Dη =  
no matter what the secondary user’s channel is. Thus, the instantaneous transmission rate of 
the scheduled SU can be written as  

( )( ) ( ) ( )( )2 2
2 N M, log 1 , + / 2i iR z D B z D zP iη η σσ = + ⋅                  (11) 

where B is the frequency bandwidth of the primary channel and P is the average transmission 
power of ST. 2

Nσ  is the variance of the white noise at the scheduled SU and and 2
Mσ is the 

power of the interference from MUs to the scheduled SU. After spectrum sensing, the fusion 
center can obtain a rough estimation of 2

Mσ  based on the received detection statistic from each 
SU with PUEA detection result being 2D . Moreover, the spectrum sensing is assumed 
completely correct in calculating the instantaneous rate shown in Eq. (11). Such an assumption 
is acceptable when Eq. (11) is only applied to optimize the scheduling and power allocation 
strategies.  

Substituting Eq. (11) into Eq. (10), we can obtain the effective capacity of the scheduled 
SU given by  

( ){ }' ( , )'
,( ) (1 ) log E i

i

T R z D
C z DE T e θ ηθ θ −= −              (12) 

where '
0T T T= − . Let’s consider the expectation in Eq.(12) over iD firstly. From Section 3, 

we can see that the sensed state of the primary channel has nine possibilities. Moreover, for the 
case of =2M , the corresponding probabilities for nine cases are listed in Appendix. Then, it 
can be easily achieved that Eq.(12) could be rewritten as  
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( ) ( ) ( ) ( )( )'2 2
,

'
0 0

1 log E iT R z D
C z j i j

j i
E P H P D H e

T
θ ηθ

θ
−

= =

 
= −  

 
∑ ∑          (13) 

 
As for the expectation over the channel gain in Eq. (13), the useful finite state channel 

model [23], [24] is adopted to enhance the algorithm’s operability. Assume the channel from 
ST to SU over the licensed frequency band follows Rayleigh block fading. Further, it is 
assumed to be i.i.d from frame to frame and among different SUs. Here, the secondary user’s 
channel is discretized to a K-state model { }CH 1 1, ,..., KM m m m= based on the received 
instantaneous signal to interference plus noise ratio (SINR) γ . Specifically, the entire SINR 
region is divided into K non-overlapping intervals according to the boundary points 
of{ }0 1, ..., Kα α α， . When γ locates in the range [ )1,k kα α− , 1, 2,...,k K= , the channel is 

considered to be the state km . Furthermore, the probabilities of the secondary channel lying in 

all the states are denoted as { }, , , ,
1 2, ,...,s j s j s j s j

Kπ π π=π , {0,1,2}j∈ and {1,2,..., }s M∈ . 
,0sπ , ,1sπ and ,2sπ correspond to the cases under three occupancy states of the licensed channel 

0H , 1H and 2H  for s-th SU, respectively.  For the Rayleigh fading channel, we have 

( )+1, k

j
k

s j s
k Hf d

α

α
π γ γ= ∫ , where ( ) ( ) ( )1

s
H j

j j

s s
H Hf e

γ γ
γ γ

−
= . Moreover, 

0

2
N

s
H s sz Pγ s= , 

1

2 2
N P(s

H s s sz Pγ s s= + ） and 
2

2 2
N M(s

H s s sz Pγ s s= + ）. Here, 
2

_ _s ST SU sz h=  is the power 
gain of the channel between ST and the s-th SU. 

Based on the finite state channel model, Eq.(13) can be expressed as  

( ) ( ) ( ) ( )( )'2 2
,,

'
0 0 1

1 log s k i
K

T R m Ds s j
C j i j k

j i ks

E P H P D H e
T

θ ηθ π
θ

−

= = =

 
= −  

 
∑ ∑ ∑        (14) 

where the s-th SU is assumed to be scheduled always.  

4.2 Joint Optimization for SU Scheduling and Power Allocation 
A. Optimization variables 
When the primary channel is sensed to be idle or occupied by MUs, the ST will schedule 

one of the M secondary users for communication with an optimized transmission power. 
Define a scheduling matrix S  with size of ...

M
K K K× × ×


according to the K-state channel 

model of each SU. Here, ( )1 2, ,..., Mk k kS is the scheduling result for the case that the channel 

state of the s-th SU is 
skm ( {1,..., }s M∀ ∈ ). ( )1 2, ,..., Mk k k s=S means that the s-th SU is 

served.  
According to the K-state finite channel model, the power allocation strategy could be 

defined as  
( )

( )

( )

( )

( )

( )

1 0 2 0 0

1 2 2 2 2

, , ,
0 0 0
, , ,

K

K

m D m D m D

m D m D m D

η η η

η η η

 
 =  
  

Γ






                        (15)  
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where ( ),k im Dη  indicates the transmission power factor when the secondary channel 

condition is the state km and the sensing result is iD . Based on the analysis in Section 4.1, the 
transmission power factor is set as zero if the detection result is PU occupying the channel, i.e. 

1D . Therefore, the elements in the second line of Γ are all set as 0. It should be noted that 

( ),k im Dη is independent on which SU is scheduled and it is only related with the scheduled 
SU’s SINR level and the sensing result about the primary channel.  

The scheduling matrix S and the power allocation strategy Γ just are our optimization 
variables in the following optimization problem.  

B. Optimization objective function 
Considering that M SUs would sharing the vacant primary channel, the weighted 

summation of M SUs’ effective capacity is adopted as the optimization objective function. 
Define 1 2[ , ,..., ]Mβ β β=β  as the weights vector. Here sβ  represents the proportion of the 
effective capacity of the s-th SU in the overall objective function. Thus, the weights have to 

satisfy the conditions of 0 1sβ≤ ≤ and 
1

1
M

s
s
β

=

=∑ . Then, the optimization objective function 

can be written as  

 ( ) ( )
1

, ,
M

s
s C s

s
EF β θ

=

=∑S Γ β                                        (16) 

where the effective capacity of the s-th  SU could be expressed as  

( ) ( ) ( ) ( )( )'
1

1 M
1

2 2 [ ( ,..., ) ] ,1, ,
'

0 0 1 1

1 log s M k is

M

K K k k s T R m Ds j M j
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E P H P D H e
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θ π π

θ
− ==

= = = =

 
= −  
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 

 (17) 

Eq.(17) is obtained by considering the effect of the SU scheduling scheme based on 
Eq.(14) . Moreover, the use of β  makes the scheme more flexible when different SUs have 
different priorities. If necessary, it could be involved as another optimization variable in the 
joint optimization problem for some scenarios and objectives.  

C. Constraint condition 
In practice, the sensing result for the licensed channel is possibly false. For instance, the 

channel is sensed to be idle or occupied by MUs, but actually it is occupied by PU. In this case, 
the transmission of SU would cause interference to the PU. Therefore, in order to limit the 
interference to the PU caused by the ST, the following interference power constraint on the 
SUs is introduced in the joint optimization [18]. 

( ){ } ( ){ }( )0 1 0 1 2 1 2 1( , ) E , | ( , ) E , |z z upI P D H z D H P D H z D H P Pη η= ⋅ + ⋅ ≤        (18) 

where upP represents the maximum interference power tolerated by PU. And, we have 

( ){ }

1
1

1

1,1 ,1
1

1 1 1

E ,

[ ( ,..., ) ] ( , ), 0, 2
M s

M

z i

K K M
M

k k M k i
k k s

z D H

k k s m D i

η

π π η
= = =

=

== =∑ ∑∑ S 

    (19) 

Except the above interference power constraint of Eq.(18), the power allocation strategy 
should also satisfy the total power constraint of ( )DE ,D 1

iz izη ≤  ，
 given in Section 4.1. 
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Further, combing the K-state channel model for SUs with detection of the primary channel, we 
have  

( )

( ) ( )
1

1

D

2 2
1, ,

1
0 0 1 1 1

E ,D

[ ( ,..., ) s] ( , )

i

M s
M

z i

K K M
j M j

j i j k k M k i
j i k k s
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P H P D H k k m D

η

π π η
= = = = =

=  

==∑ ∑ ∑ ∑∑ S 

，

(20) 

D. Optimization problem 
Based on the above description, we can finally establish the following optimization 

problem:  

( ) ( )

( )
, 1

D

maximize , ,

s.t. E ,D 1   
i

M
s

s C s
s

z i

up

E

z

I P

F β θ

η
=

=

≤  
≤

∑S Γ
S Γ β

，
                               (21) 

where the first constraint is the sum power constraint and the second constraint corresponds to 
the interference constraint to the PU.  

4.3. The solution of optimization problem 
To solve the problem of Eq. (21), the alternating iterative optimization is used over the 

scheduling matrix S and the power allocation strategyΓ under a fixed β , which is shown as 
follows: 

Specify the parameters ofβ , 1,..., Mθ θ and ε . Initialize max 0F = . 

Step 1): Select one S in the set of [1,..., ]
MKM randomly. 

Step 2): Optimize Γ  with the CVX toolbox in that ( ).F is a monotonically increasing 

function with respect to Γ . Next, calculate opF based on the expression of ( ), ,F S Γ β . 

Step 3): Search an optimized S in the set of [1,..., ]
MKM exhaustively to maximize 

( ), ,F S Γ β  under the case of Γ  obtained in Step 2). Then, update opF . 

Step 4): Comparing opF  and maxF , if max opF F ε− < , the iteration is ended. Otherwise, if  

max opF F ε− >  and maxopF F> , then set max opFF =  and skip to Step 2).  If  

max opF F ε− >  and maxopF F< , then directly skip to Step 2).   

From the above iterative optimization process, it can be obtained that the computation 
complexity of our algorithm is mainly dependent on three factors, namely the number of 
iteration, the complexity to compute Γ  by CVX toolbox and the computational cost of 
exhaustively searching S. These three parameters are denoted by ITEI , CVXC and SEC , 
respectively. Then, the complexity of our optimization algorithm can be expressed as  

ITE CVX SE( )I C C⋅ +  approximately. According to our simulation, the iteration process could 
reach convergence after about 4 iterations.  As to CVXC , it would be decided by the convex 
optimization algorithms utilized by CVX toolbox and the user usually has no the exact 
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information about them. Therefore, it is difficult to analyze CVXC  quantitatively. Thus, the 
runtime of CVX toolbox over a specific computer and software can be used to evaluate its 
running efficiency, just as done in [25]. The concrete runtime under our specific simulation 
scenario and configuration will be presented in Section 5. Moreover, an exhaustive search is 
executed in step 3) to find the optimized S in a set with size of 

MKM . Hence, SEC is 

proportional to 
MKM and it increases extremely fast with K and M. In fact, for small K and M, 

the overall complexity is mainly decided by the running cost of CVX toolbox. However, for 
large K and M, the complexity of exhaustive search is dominant.  

Although the alternating iterative optimization is complex and has a high computational 
overhead, it is only executed offline and independent on the instantaneous channel state 
information. For the specific M , SINR quantization and channel model, the above iterative 
optimization is carried out only once to obtain S and Γ . In practical operation, how to 
schedule SU and allocate the transmit power could be easily obtained by looking up S and 
Γ according to the SUs’ quantized SINR.  

5. Simulation Results and Discussions 
To evaluate the proposed multiple-phase detection scheme in Section 3 and the effective 
capacity based resource allocation algorithm in Section 4, a simulation system is built by using 
MATLAB 2018a. The simulation system includes one PU and two SUs. The number of MUs 
is one or two. For convenience, we put all users into a two-dimensional Cartesian coordinate 
system. The default unit of power is Watt, and the default unit of distance is Km. The primary 
simulation parameters are shown in Table 1. 
 

Table 1. Primary Simulation Parameters 
Parameters Assumptions 

the Priori probabilities 0( )P H , 1( )P H , 2( )P H  0.25,0.5,0.25 

Constraints for correct detection probabilities 
0.99a = (Except Fig. 6) 

0.9b = (Except Fig. 6 ~ Fig. 8 ) 
PU’s position (0,0) 

PU’s transmit power PU 100P =  

Noise variance 2 2
N1 N2= =1σσ   

Number of samples N=100 (Except Fig. 8 ) 

5.1 Performance of Multiple-Phase Energy Detection for PUEA 
In this section, the performance of the proposed multiple-phase energy detection scheme for 
PUEA is evaluated. Under each of three Prior states, we carried out 10,000 Monte Carlo 
simulations to test the performance. To simplify the expression, we define that 

2 2
X 10 X N10log ( / )s s sg s s= , where 1, 2s =  and X is P or M. X

sDis  denote the distances of the 
s-th SU from the PU or MU. The received power of each SU can be calculated by 

2 P 2
P P PU PU / ( )s s sz P P Diss = =  and 2 M 2

M M MU MU / ( )s s sz P P Diss = = .   
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Fig. 3. 1 1( / )P D H  where the distances of two SUs from the PT are varied 
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Fig. 4. 2 2( / )P D H where the distances of two SUs from the PT and the MU are varied 

Fig. 3 and Fig. 4 give the detection probabilities under 1H and 2H  states for various 
distances of two SUs from the PT or the MU, respectively. Here, only one MU is considered. 
Since the correct detection probability under actual state 1H is concerned in Fig. 3, PU is 
always existing and then MU keeps silent in this simulation. This is according to the 
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assumption that MUs only attack in the absence of PU. From Fig. 3, we can see that all the 
simulation results are roughly located in the theory lines. Here, the theory results are 
corresponding to the analysis results given in Appendix. It can be seen that the practical 
probabilities of correction detection under 1H basically satisfy the constraints preset. When 
the distances between the two users and the PT are different, the simulation value is slightly 
higher than the theoretical value which is induced by the approximate assumptions used in 
calculating the thresholds. However, such a little bias of the simulation result from the 
analytical result indicates that the independence assumption among different detection 
statistics is feasible. In Fig. 4, different PU’s locations are considered, but the PU does not 
transmit signal during the whole simulation, for the detection of PUEA being focused on. 
From Fig. 4, it can be seen clearly that the probability of detecting PUEA will decrease as 

2
Mkσ  approaches 2

Pkσ  and it will reach the minimum value when the distance feature of two 
SUs from the MU are same as that from the PT.  Moreover, it can be seen from the cases of low 
SNR in Fig. 3 and Fig. 4 that the larger difference of the distances between two SUs from the 
PT or MU is, the higher detection probability is. This means that different power features of 
various SUs contribute more to detect PUEA. 
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Fig. 5. The PUEA detection probability with two moving Mus 

 
Next, we would compare the proposed detection scheme with a CSS scheme which uses the 

K/N guideline [26]. Here, 0 0( / )P D H and 1 1( / )P D H  of two schemes are kept same so that 
only 2 2( / )P D H  curves are compared. Because there are two SUs, the 1/2 rule with detection 
priority 1 2 0D D D> > is included for the baseline scheme. In Fig. 5, two MUs move along 



1328                                                                Liu et al.:  Multiple-Phase Energy Detection and Effective Capacity Based 
Resource Allocation Against Primary User Emulation Attacks in Cognitive Networks 

two different straights lines synchronously. Moreover, they have different transmitting powers, 
i.e, M1 60P =  and M2 40P = . Two cases of P P

2 1Dis Dis=  and P P
2 1Dis Dis≠ are simulated. It 

can be seen that the proposed scheme is better than the K/N scheme except the cases that two 
MUs move to the same location of PT. In these situations, both schemes reach to the worst 
detection performance and they are both not able to identify MU from PT completely. 
Particularly, in the case that two SUs have different distances from the PT, the advantage of 
our method over the baseline one is more obvious. When the MUs are far from the SUs, the 

2
Mss  received by the SUs are very small. Then, the channel state is most detected to be 0H  

and the probability of detecting MU is low just shown in the left and right side of the curves. 
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Fig. 6. 2 2( / )P D H vs false alarm probability with different 1 1( / )P D H  

 
The receiver operation characteristic (ROC) curves are always used to evaluate the 

detection performance of the traditional two-state hypothesis testing. For a three-state 
hypothesis, the similar curves can also be drawn. Since PU and PUEA are both the detection 
objects, 1 0 2 0( / ) ( / )P D H P D H+ could be taken as the false-alarm probability. Accordingly, 
the detection probability could be 1 1 2 2( / ) ( / )P D H P D H+ . To show more details, the 
variation of 2 2( / )P D H  with the false-alarm probability under three fixed 1 1( / )P D H  is 
presented in Fig.6.  Here, two SUs have different received SNRs from the PT and the MU, 
which are setting as P1 5dBγ = , P2 4dBγ = , M1 5.5dBγ = and M2 4.5dBγ = , respectively. It 
can be seen that the PUEA detection probabilities for both schemes increase very fast with the 
false-alarm probability and soon converge to a high level at a very low false-alarm probability. 
This benefits from CSS of multiple SUs. Further, the proposed scheme still outperforms the 
K-out-N method especially at a high PU detection probability. From Fig.7, it is also 
demonstrated that 2 2( / )P D H is almost independent on the false-alarm probability but 
significantly affected by PU detection probability. Therefore, in the following two figures, the 
variation of 2 2( / )P D H with 1 1( / )P D H is concerned. 
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Fig. 7. 2 2( / )P D H  vs 1 1( / )P D H with different numbers of SUs 

Moreover, the various number of SUs from 2 to 5 is considered in Fig. 7. Here, the value of 
a  in the constraint condition 0 0( / )P D H a≥  is fixed as 0.99 and we change the setting of b . 

SNRs of different SUs from the PT and MU are setting as P1 5dBγ = , P2 4dBγ = , 

P3 3dBγ = , P4 2dBγ = ， P5 1dBγ = , M1 5.5dBγ = , M2 4.5dBγ = , M3 3.5dBγ = , 

M4 2.5dBγ =  and M5 1.5dBγ = , respectively. As can be seen from Fig. 7, the greater number 
of SUs is, the better detection performance is for the multiple-phase detection method. The 
proposed scheme outperforms the K/N one with the same number of SUs. Concretely, the MP 
detection scheme with two SUs has nearly the same detection performance as the K/N scheme 
with five SUs. Moreover, we can see that the detection probability of PUEA reduces with the 
detection probability of PU increasing. 

In addition, Fig. 8 shows the effect of the number of samples N on the PUEA detection 
performance. The other system assumption is same as the simulation of Fig. 6.  From Fig. 8, it 
can be shown that the PUEA detection probability becomes larger with N growing for an 
appointed PU detection probability. The outperformance of our scheme over K/N method is 
more obvious with middle N, such as 100 and 500. In a practical system, for a longer N, the 
data transmission time left in a frame would be shorter and then the throughput of secondary 
network may reduce. Therefore, N should be selected appropriately to obtain a good tradeoff 
between the sensing performance and the throughput of secondary network. The optimization 
of N is not covered in our work yet, but it can be involved in the optimization problem for the 
resource allocation in future work. 

5.2 Performance of Effective Capacity based Resource Allocation 
In this section, the proposed effective capacity based joint SUs scheduling and power 

allocation scheme is evaluated. The performance indicator is the weighted sum of the two 
SUs’ normalized effective rates over bandwidth B. Without loss of generality, we consider a 
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specific scenario where the transmitting powers are set as P M 100P P P= = = , and the 
positions of the PT, MU, SU-1 and SU-2 are located at (0,0), (10,10), (10,0) and (5,0), 
respectively. The ST locates in the middle of two SUs. If there is no special explanation the 
multiple-phase (MP) energy detector proposed in Section 3 is used for spectrum sensing. 
Furthermore, the sensing time is 9% of one frame.  
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Fig. 8. 2 2( / )P D H  vs 1 1( / )P D H with different sensing lengths 
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Fig. 9. Weighted sum of two SU’s effective rates of various schemes vs 1β  
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We compare the proposed joint optimization scheme, denoted by OPOS in the following 
figures, with the schemes called the optimized-power allocation and random-scheduling 
(OPRS), the equal-power allocation and optimized-scheduling (EPOS) and the equal-power 
allocation and random-scheduling (EPRS). Here, the equal-power allocation indicates that the 
transmission powers of the ST under two detected statues 0D and 2D  are equal and keep stable 
for any SU’s channel state. The Random-Scheduling indicates that the scheduling matrix is 
randomly selected among the set of [1,..., ]

MKM .  

Fig. 9 shows the weighted sum of two SU’s effective rates versus the weighting factor 1β  
under the conditions of 2 1θ θ=  and 2 1θ θ≠ , respectively. It can be seen obviously that the 
joint optimization schemes proposed has the highest weighted sum of two SUs’ effective 
capacity. Specially, we can see from the below subfigure that the right end points of two 
curves including optimized-scheduling are both lower than the left end points. The formers 
correspond to the case only serving SU-1 and the letter ones indicate that SU-2 is always 
scheduled. This result show that the effective rate is smaller for a larger θ , which satisfies the 
basic principle of effective capacity. Specially, we can find from two subfigures that the 
improvement of optimization-scheduling is more evident than the optimization-power 
allocation as a whole. 
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Fig. 10. Weighted sum of two SU’s effective rates with two PUEA detectors 

 
In Fig. 10, the performance of OPOS scheme is given under two cases that the proposed 

MP energy detection and the K/N detection are used, respectively. It can be seen that the 
improvement of the detection accuracy can obtain better effective rate. The performance gain 
with the MP detector is about 0.3 bps/Hz under the specific scenario in our simulation. This is 
because the detection probabilities have an obvious effect on the resource allocation. 
Concretely, 0 1( , )P D H  and 2 1( , )P D H  would affect the setting of ( ),k jm Dη  and 

2 2( , )P D H  would affect the opportunity of SUs to transmit data. 

In Fig. 11, we compare two transmission modes, namely the D0 and D2 mode and the only 
D0 mode. The former one means SUs will transmit data when the detection result is D0 or D2. 
The letter one corresponds to that SUs will transmit data only when the detection result is D0 
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and this mode is also the pure overlay mode in [27]. It can be seen that F  is larger for the D0 
and D2 mode than that for the only D0 mode. That is the advantage caused by letting SU 
transmit data under the status D2. In both modes, ( )DE ,D

iz k imη  ，  is close to 1. However, 

under the D0 and D2 mode, the real interference power I  is close to the upper limit upP (0.1), 
while under only D0 mode, the interference power I  is nearly 0. The light improved 
interference of SU to the PU is just the cost of the proposed scheme.  
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Fig. 11. Weighted sum of two SU’s effective rates under two transmission modes 

 
In order to show the computation efficiency of our resource allocation scheme, the runtime 

is recorded during simulation operation. Using MATLAB on an Intel(R) Core(TM) i3-7100 
3.90GHz with Windows operation system (OS), the average runtime needed by searching S 
for one time is about 5.07 seconds.  The mean runtime of CVX to find Γ is approximately 
11.74 seconds. The number of iteration is about 4 in our simulation. Thus, the overall 
computation cost is about 67 seconds.  Here, M=2 and K=4. The overall computation cost is 
more dependent on the operation overhead of CVX toolbox, which is consistent with the 
analysis in Section 4.3. 

5. Conclusions 
Primary user emulation attack (PUEA) could worsen the QoS of SUs in cognitive radio 
networks through emulating the PU to transmit signals over the idle primary channel and 
trying to prevent SUs from accessing the spectrum. Aiming at this attack problem, a 
multiple-phase energy detection scheme based on the cooperation of multiple secondary users 
is first proposed to detect the PUEA more accurately. Further, the weights in detection 
statistics and the decision thresholds are determined. Second, a joint SUs scheduling and 

mailto:CPU@3.90GHz
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power allocation scheme based on effective capacity is proposed to guarantee the different 
delay QoS of multiply SUs. Its objective is to maximize the weighted effective capacity of the 
SUs with a constraint of the average interference to the PU. The simulation results show that 
the proposed PUEA detector has higher detection accuracy for PUEA. The new resource 
allocation scheme can effectively improve the weighted sum effective capacity of SUs by 
allowing SUs to transmit data when the primary channel is detected to be occupied by the 
attacker. However, the given PUEA detector is still based on the simple energy detection. 
Then, the detection will be false when the MU can emulate the received energy feature at all 
the SUs similar as from the PT. Since such an attack is not difficult for the MU with the 
developing of signal processing ability and smart level. Therefore, a more efficient detector 
would be studied in future, which can explore more features of transmitting signals and use 
intelligent learning technique. In addition, the parameters in both the sensing phase and the 
data transmitting phase would be optimized jointly to obtain the better whole system 
performance. 

Appendix  
The probabilities of nine PUEA detection cases with two SUs are calculated as 

Case 1:  

( )2
00 0 0 0 0 1 0 0 0 0 0( ) ( / ) ( ) ( ) ( ) 1 ( )i iP P H P D H P H P V P H Qλ λ β δ = = ≤ = − −  
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{ }12 22

11 21

22 1 2 1
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λ λ
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Case 3:  
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λ β d λ β d λ β d
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 − − − − − − + 

− − − − − −

∫ ∫
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11 22

2
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Case 4:  
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Case 7:  
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( )2
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Case 9:  
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where ρ  is the correlation coefficient between 1V  and 2V . 
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