• Title/Summary/Keyword: Jacobi matrix

Search Result 27, Processing Time 0.024 seconds

Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E (병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구)

  • Gwon, Gi-Chan;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

A CORDIC-Jacobi Based Spectrum Sensing Algorithm For Cognitive Radio

  • Tan, Xiaobo;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.1998-2016
    • /
    • 2012
  • Reliable spectrum sensing algorithm is a fundamental component in cognitive radio. In this paper, a non-cooperative spectrum sensing algorithm which needs only one cognitive radio node named CORDIC (Coordinate Rotation Digital Computer) Jacobi based method is proposed. The algorithm computes the eigenvalues of the sampled covariance of received signal mainly by shift and additional operations, which is suitable for hardware implementation. Based the latest random matrix theory (RMT) about the distribution of the limiting maximum and minimum eigenvalue ratio, the relationship between the probability of false alarm and the decision threshold is derived. Simulations and discussions show the method is effective. Real captured digital television (DTV) signals and Universal Software Radio Peripheral (USRP) are also employed to evaluate the performance of the algorithm, which prove the proposed algorithm can be applied in practical spectrum sensing applications.

Analysis of Dynamic Characteristics of Rectangular Plates by Finite Element Method (유한요소법을 이용한 평판의 동특성 연구)

  • 태순호;이태연;허문회
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.30-41
    • /
    • 1992
  • Analysis of Dynamic Characterisocs of Rectangular Plate by Finite Element Method. Dynamic characteristics of a rectangular plate with opening in it is studied by finite element method. To investigate these characteristics 12 degrees of freedom membrane finite element in used. The rectangular membrane finite elements are defined by specifying geometry, internal displacement functions and strain-displacement relations. Then, the governing equation for the finite element is derived by energy method. To derive the mass matrix and stiffness matrix of the element, expressions for strain and kineic energy in terms of the node displacement are generated. In constructing the overall structure matrix, the matrix of each elements are superposed and partitioned by applying the given boundary condition to obtain a nonslngular matrix. To find the natural freguencies and viration modes, the eigen values and the corresponding eigen vectors are computed by the computer using well known Jacobi power method. In order to verify the capability of the membrane finite element, a flat rectangular plate is analyzed first, and the result is compared with well known analytical results to show the good agreement. A rectangular plate with opening in It is analyzed with the same finite element. The results are presented in this paper. Unfortunately, the literature study could not provide with some results to compare, but the results reveal that the output of this research is phlslcally reasonable. And the results of this research are useful not only in practice but also for the future experimental research in comparison purpose.

  • PDF

STRICTLY INFINITESIMALLY GENERATED TOTALLY POSITIVE MATRICES

  • Chon, In-Heung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.443-456
    • /
    • 2005
  • Let G be a Lie group, let L(G) be its Lie algebra, and let exp : $L(G){\rightarrow}G$ denote the exponential mapping. For $S{\subseteq}G$, we define the tangent set of S by $L(S)\;=\;\{X\;{\in}\;L(G)\;:\;exp(tX)\;\in\;S\;for\;all\;t\;{\geq}\;0\}$. We say that a semigroup S is strictly infinitesimally generated if S is the same as the semigroup generated by exp(L(S)). We find a tangent set of the semigroup of all non-singular totally positive matrices and show that the semigroup is strictly infinitesimally generated by the tangent set of the semigroup. This generalizes the familiar relationships between connected Lie subgroups of G and their Lie algebras

Two dimensional variable-length vector storage format for efficient storage of sparse matrix in the finite element method (유한요소법에서 희소행렬의 효율적인 저장을 위한 2차원 가변길이 벡터 저장구조)

  • Boo, Hee-Hyung;Kim, Sung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.9-16
    • /
    • 2012
  • In this paper, we propose the two dimensional variable-length vector storage format which can be used for efficient storage of sparse matrix in the FEM (finite element method). The proposed storage format is the method storing only actual needed non-zero values of each row on upper triangular matrix with the total rows N, by using two dimensional variable-length vector instead of $N{\times}N$ large sparse matrix of entire equation of finite elements. This method only needs storage spaces of the number of minimum 1 to maximum 5 in 2D grid structure and the number of minimum 1 to maximum 14 in 3D grid structure of analysis target. The number doesn't excess two times although involving index number. From the experimental result, we can find out that the proposed storage format can reduce the memory space more effectively, as the total number of nodes increases, than the existing skyline storage format storing maximum column height.

Efficient Iterative Physical Optics(IPO) Algorithms for Calculation of RCS (RCS 계산을 위한 효율적인 IPO 계산 방법)

  • Lee, Hyunsoo;Jung, Ki-Hwan;Chae, Dae-Young;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.601-606
    • /
    • 2014
  • The IPO(Iterative Physical Optics) method repeatedly applies the well-known PO(Physical Optics) approximation to calculate the scattered field by a large object. Thus, the IPO method can consider the multiple scattering in the object, which is ignored for the PO approximation. This kind of iteration can improve the final accuracy of the induced current on the scatterer, which can result in the enhancement of the accuracy of the RCS(Radar Cross Section) of the scatterer. Since the IPO method can not exactly but approximately solve the required integral equation, however, the convergence of the IPO solution can not be guaranteed. Hence, we apply the famous techniques used in the inversion of a matrix to the IPO method, which include Jacobi, Gauss-Seidel, SOR(Successive Over Relaxation) and Richardson methods. The proposed IPO methods can efficiently calculate the RCS of a large scatterer, and are numerically verified.

EXPLICIT BOUNDS FOR THE TWO-LEVEL PRECONDITIONER OF THE P1 DISCONTINUOUS GALERKIN METHOD ON RECTANGULAR MESHES

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.267-280
    • /
    • 2009
  • In this paper we investigate a simple two-level additive Schwarz preconditioner for the P1 symmetric interior penalty Galerkin method of the Poisson equation on rectangular meshes. The construction is based on the decomposition of the global space of piecewise linear polynomials into the sum of local subspaces, each of which corresponds to an element of the underlying mesh, and the global coarse subspace consisting of piecewise constants. This preconditioner is a direct combination of the block Jacobi iteration and the cell-centered finite difference method, and thus very easy to implement. Explicit upper and lower bounds for the maximum and minimum eigenvalues of the preconditioned matrix system are derived and confirmed by some numerical experiments.

  • PDF

THE RECURSIVE ALGOFITHM FOR OPTIMAL REGULATOR OF NONSTANCARD SINGULARLY PERTURVED SYSTEMS

  • Mukaidani, Hiroaki;Xu, Hau;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.10-13
    • /
    • 1995
  • This paper considers the linear-quadratic optimal regulator problem for nonstandard singularly perturbed systems making use of the recursive technique. We first derive a generalized Riccati differential equation by the Hamilton-Jacobi equation. In order to obtain the feedback gain, we must solve the generalized algebraic Riccati equation. Using the recursive technique, we show that the solution of the generalized algebraic Riccati equation converges with the rate of convergence of O(.epsilon.). The existence of a bounded solution of error term can be proved by the implicit function theorem. It is enough to show that the corresponding Jacobian matrix is nonsingular at .epsilon. = 0. As a result, the solution of optimal regulator problem for nonstandard singularly perturbed systems can be obtained with an accuracy of O(.epsilon.$^{k}$ ). The proposed technique represents a significant improvement since the existing method for the standard singularly perturbed systems can not be applied to the nonstandard singularly perturbed systems.

  • PDF

Implicit Incompressible flow solver on Unstructured Hybrid grids (비정렬 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim, Jong-Tae;Kim, Yong-Mo;Maeng, Ju-Seong
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.17-26
    • /
    • 1998
  • The three-dimensional incompressible Navier-Stokes equations have been solved by a node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method with Jacobi matrix solver is used for the time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetragedra, prisms, pyramids, hexahedra, or mixed-element grid. Inviscid bump flow is solved to check the accuracy of high order convective flux discretisation. And viscous flows around a circular cylinder and a sphere are studied to show the efficiency and accuracy of the solver.

  • PDF

GAUSSIAN QUADRATURE FORMULAS AND LAGUERRE-PERRON@S EQUATION

  • HAJJI S. EL;TOUIJRAT L.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.205-228
    • /
    • 2005
  • Let I(f) be the integral defined by : $I(f) = \int\limits_{a}^{b} f(x)w(x)dx$ with f a given function, w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value of I(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.