• Title/Summary/Keyword: J-V characteristics

Search Result 728, Processing Time 0.029 seconds

Output Characteristics of Parallel or Serially Connected Helical Magneto-Cumulative Generators (병렬 또는 직렬로 결합한 나선형 자장압축발전기의 출력특성 분석)

  • Kuk Jeong-Hyeon;Lee Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.647-657
    • /
    • 2004
  • Helical magneto-cumulative generator(HMCG)s are very useful devices in suppling pulsed high current to inductance loads. To apply fast high voltage pulses to high impedance loads, high current outputs of HMCGs are required to be conditioned to higher voltages by using various pulse components such as opening/closing switches and pulse transformer. In this paper, stepping with the trends of requirements for ever-increasing energy in pulsed power applications coupling methods is investigated to obtain higher output energy by connecting several HMCGs in series or parallel way. The coil dimension of HMCGs used in series or parallel connections was 50 mm in diameter and 150 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and peak voltage of load were achieved from the serially connected four-barrel HMCG system. They were 68 and 34 kV, respectively, when the initial energy of 0.36 kJ was supplied into that system with the load of 0.4 μH. Within the tested range of inductance ratio, energy amplification ratio was found to be highly dependent on the inductance ratio of serial- and parallel-connected HMCG systems to load, which to be optimal around 500 was turned out. The experimental results showed that the output energy and voltage of load are controlled by connecting HMCGs in series or parallel.

Surface treatment of ITO with Nd:YAG laser and OLED device characteristic (Nd:YAG 레이저로 표면처리된 ITO를 전극으로 한 유기EL 소자의 특성)

  • No, I.J.;Shin, P.K.;Kim, H.K.;Kim, Y.W.;Lim, Y.C.;Park, K.S.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1359-1360
    • /
    • 2006
  • lTO(Indium-Tin-Oxide) was used as anode material for OLED. Characteristics of ITO have great effect on efficiency of OLEDS(Organic light emitting diodes). ITO surface was treated by Nd:YAG laser in order to improve its chemical properties, wettability, adhesive property and to remove the surface contaminants while maintaining its original function. In this study, main purpose was to improve the efficiency of OLEDs by the ITO surface treatment: ITO surface was treated using a Nd:YAG(${\lambda}=266nm$, pulse) with a fixed power of 0.06[w] and various stage scanning velocities. Surface morphology of the ITO was investigated by AFM. Test OLEDs with surface treated ITO were fabricated by deposition of TPD (HTL), Ald3 (ETL/TML) and Al (cathode) thin films. Device performance of the OLEDs such as V-I-L was investigated using Source Measurement Unit (SMU: Keithly. Model 2400) and Luminance Measurement (TOPCON. BM-8).

  • PDF

Fabrication of OTFT with plasma polymerized methylmethacrylate organic thin film (플라즈마 중합된 ppMMA 유기 박막을 절연층으로 한 유기박막 트랜지스터의 제작)

  • Lim, J.S.;Shin, P.K.;You, D.H.;Park, G.B.;Lim, H.C.;Jo, G.S.;Lee, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1347-1348
    • /
    • 2007
  • In this paper, ITO gate electrode surface was modified using $O_2$ plasma and organic gate insulating layers were deposited on the ITO surface using plasma polymerization technique. In order to investigate the influence of the plasma coupling method and plasma conditions on the plasma polymerized methyl methacrylate (ppMMA) thin film properties, inductively coupled (ICP) and capacitively coupled plasma (CCP) were used to generate the plasma and the plasma parameters were varied. The ppMMAs were investigated using atomic force microscopy (AFM) and a Fourier Transform Infrared (FT-IR) spectroscopy. Dielectric constants of the ppMMA thin films were investigated using a impedance analyzer (HP4192A, LF Impedance Analyzer). Current-Voltage (I-V) characteristics of the organic thin film transistors (OTFTs) were investigated using a source measurement unit (SMU: Keithley 2612). Proposed method can be applied to dry-process to fabricate OTFTs during overall fabricating steps.

  • PDF

Dynamic to static eccentricity ratio for site-specific earthquakes

  • Kamatchi, P.;Ramana, G.V.;Nagpal, A.K.;Iyer, Nagesh R.;Bhat, J.A.
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.391-413
    • /
    • 2015
  • Damage of torsionally coupled buildings situated on soil sites has been reported in literature, however no site-specific studies are available for torsionally coupled buildings having site characteristics as a parameter. Effect of torsion is being accounted in seismic codes by the provision of design eccentricity where the dynamic to static eccentricity ratio is a parameter. In this paper, a methodology to determine dynamic to static eccentricity ratio of torsionally coupled buildings has been demonstrated for Delhi region for two torsionally coupled buildings on three soil sites. The variations of average and standard deviations of frame shears for stiff and flexible edges are studied for four eccentricity ratios for the two buildings for the three sites. From the limited studies made, it is observed that the dynamic to static eccentricity ratios observed for site-specific earthquakes are different from Indian seismic code specified value, hence a proposal is made to include a comment in Indian seismic code. Methodology proposed in this paper can be adopted for any region, for the estimation of dynamic to static eccentricity ratio for site specific earthquake.

Effect of metakaolin on the properties of conventional and self compacting concrete

  • Lenka, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.31-48
    • /
    • 2017
  • Supplementary cementitious materials (SCM) have turned out to be a vital portion of extraordinary strength and performance concrete. Metakaolin (MK) is one of SCM material is acquired by calcinations of kaolinite. Universally utilised as pozzolanic material in concrete to enhance mechanical and durability properties. This study investigates the fresh and hardened properties of conventional concrete (CC) and self compacting concrete (SCC) by partially replacing cement with MK in diverse percentages. In CC and SCC, partial replacement of cement with MK varies from 5-20%. Fresh concrete properties of CC are conducted by slump test and compaction factor tests and for SCC, slump flow, T500, J-Ring, L-Box, V-Funnel and U-Box tests. Hardened concrete characteristics are investigated by compressive, split tensile and flexural strengths at age of 7, 28 and 90 days of curing under water. Carbonation depth, water absorption and density of MK based CC and SCC was also computed. Fresh concrete test results indicated that increase in MK replacement increases workability of concrete in a constant w/b ratio. Also, outcomes reveal that concrete integrating MK had greater compressive, flexural and split tensile strengths. Optimum replacement level of MK for cement was 10%, which increased mechanical properties and robustness properties of concrete.

Radioiodine removal from air streams with impregnated UVIS® carbon fiber

  • Obruchikov, Alexander V.;Merkushkin, Aleksei O.;Magomedbekov, Eldar P.;Anurova, Olga M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1717-1722
    • /
    • 2021
  • This study is devoted to the ability of carbon fiber material samples impregnated with various amounts of barium iodide and triethylenediamine to remove radioactive methyliodide from air streams. The main sorption characteristics of impregnated UVIS® carbon fiber were determined and the use of this material for purifying of technological gas flows at nuclear power plants was evaluated. The methyliodide trapping efficiency by samples impregnated with barium iodide, TEDA, and their mixture was 83.4 ± 0.8%; 93.1 ± 0.6% and 93.5 ± 0.7% respectively, under the same conditions. The study established a significantly higher capacity (8.3 ± 0.07 mg/cm2) of samples impregnated simultaneously with both chemical compounds toward methyliodide. Under the same test conditions, the values of this parameter for the samples impregnated separately with TEDA and BaI2 were 2.85 ± 0.05 mg/cm2 and 0.86 ± 0.04 mg/cm2, respectively.

Performance Improvement of Flexible Thin Film Si Solar Cells using Graphite Substrate (그라파이트 기판을 이용한 유연 박막 실리콘 태양전지 특성 향상)

  • Lim, Gyeong-yeol;Cho, Jun-sik;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.317-321
    • /
    • 2019
  • We investigated the characteristics of nano crystalline silicon(nc-Si) thin-film solar cells on graphite substrates. Amorphous silicon(a-Si) thin-film solar cells on graphite plates show low conversion efficiency due to high surface roughness, and many recombination by dangling bonds. In previous studies, we deposited barrier films by plasma enhanced chemical vapor deposition(PECVD) on graphite plate to reduce surface roughness and achieved ~7.8 % cell efficiency. In this study, we fabricated nc-Si thin film solar cell on graphite in order to increase the efficiency of solar cells. We achieved 8.45 % efficiency on graphite plate and applied this to nc-Si on graphite sheet for flexible solar cell applications. The characterization of the cell is performed with external quantum efficiency(EQE) and current density-voltage measurements(J-V). As a result, we obtain ~8.42 % cell efficiency in a flexible solar cell fabricated on a graphite sheet, which performance is similar to that of cells fabricated on graphite plates.

The influence of BaO on the mechanical and gamma / fast neutron shielding properties of lead phosphate glasses

  • Mahmoud, K.A.;El-Agawany, F.I.;Tashlykov, O.L.;Ahmed, Emad M.;Rammah, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3816-3823
    • /
    • 2021
  • The mechanical features evaluated theoretically using Makishima-Mackenzie's model for glasses xBaO-(50-x) PbO-50P2O5 where x = 0, 5, 10, 15, 20, 30, 40, and 50 mol%. Wherefore, the elastic characteristics; Young's, bulk, shear, and longitudinal modulus calculated. The obtained result showed an increase in the calculated values of elastic moduli with the replacement of the PbO by BaO contents. Moreover, the Poisson ratio, micro-hardness, and the softening temperature calculated for the investigated glasses. Besides, gamma and neutron shielding ability evaluated for the barium doped lead phosphate glasses. Monte Caro code (MCNP-5) and the Phy-X/PSD program applied to estimate the mass attenuation coefficient of the studied glasses. The decrease in the PbO ratio has a negative effect on the MAC. The highest MAC decreased from 65.896 cm2/g to 32.711 cm2/g at 0.015 MeV for BPP0 and BPP7, respectively. The calculated values of EBF and EABF showed that replacement of PbO with BaO contents in the studied BPP glasses helps to reduce the number of photons accumulated inside the studied BPP glasses.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Multiscale simulations for estimating mechanical properties of ion irradiated 308 based on microstructural features

  • Dong-Hyeon Kwak ;Jae Min Sim;Yoon-Suk Chang ;Byeong Seo Kong ;Changheui Jang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2823-2834
    • /
    • 2023
  • Austenitic stainless steel welds (ASSWs) of nuclear components undergo aging-related degradations caused by high temperature and neutron radiation. Since irradiation leads to the change of material characteristics, relevant quantification is important for long-term operation, but limitations exist. Although ion irradiation is utilized to emulate neutron irradiation, its penetration depth is too shallow to measure bulk properties. In this study, a systematic approach was suggested to estimate mechanical properties of ion irradiated 308 ASSW. First of all, weld specimens were irradiated by 2 MeV proton to 1 and 10 dpa. Microstructure evolutions due to irradiation in δ-ferrite and austenite phases were characterized and micropillar compression tests were performed. In succession, dislocation density based stress-strain (S-S) relationships and quantification models of irradiation defects were adopted to define phases in finite element analyses. Resultant microscopic S-S curves were compared to verify material parameters. Finally, macroscopic behaviors were calculated by multiscale simulations using real microstructure based representative volume element (RVE). Validity of the approach was verified for the unirradiated specimens such that the estimated S-S curves and 0.2% offset yield strengths (YSs) which was 363.14 MPa were in 10% agreement with test. For irradiated specimens, the estimated YS were 917.41 MPa in 9% agreement.